Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 944: 173827, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38866164

ABSTRACT

The improvement in the agricultural production through continuous and heavy nutrient input like nitrogen fertilizer under the upland red soil of south China deteriorates soil quality, and this practice in the future could threaten future food production and cause serious environmental problems in China. This research is initiated with the objectives of evaluating the impacts of long-term chemical nitrogen fertilization on soil quality, crop yield, and greenhouse gas emissions, with insights into post-lime application responses. Compared to sole application of chemical nitrogen fertilization, combined application with lime increased soil indicators (pH by 6.30 %-7.76 %, Ca2+ by 90.06 %-252.77 %, Mg2+ by 184.47 %-358.05 %, available P by 5.05 %-30.04 %, and soil alkali hydrolysable N by 23.49 %-41.55 %. Combined application of chemical nitrogen fertilization with lime (NPCa (0.59), NPKCa (0.61), and NKCa (0.27) significantly improved soil quality index compared to the sole application of chemical nitrogen fertilization (NP (0.31), NPK (0.36), and NK (0.16). Compared to sole application of chemical nitrogen fertilization, combined application with lime increased grain yield by 48.36 %-61.49 %. Structural equation modeling elucidated that combined application of chemical nitrogen fertilization and lime improved wheat grain yield by improving soil quality. Exchangeable Ca2+, exchangeable Mg2+, pH, and exchangeable Al3+ were the most influential factors of wheat grain yield. Overall, the combined application of chemical nitrogen fertilization and lime decreased global warming potential (calculated from N2O and CO2) by 16.92 % emissions compared to the sole application of chemical nitrogen fertilization. Therefore, liming acidic soil in upland red soil of South China is a promising management option for improved soil quality, wheat grain yield, and mitigation of greenhouse gas emissions.

2.
Sci Total Environ ; 916: 170270, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38278248

ABSTRACT

The efficient management of fertilizer application in agriculture is vital for both food security and mitigating greenhouse gas (GHG) emissions. However, as potassium fertilizer (KF) is an essential soil nutrient, its impact on soil GHG emissions has received little attention. To address this knowledge gap and identify key determinants of GHG emissions, we conducted a comprehensive meta-analysis of 205 independent experiments conducted worldwide. Our results revealed that, in comparison to sole nitrogen fertilizer (NF) application, the concurrent use of KF elevated nitrous oxide (N2O) and methane (CH4) emissions by 39.5 % and 21.1 %, respectively, while concurrently reducing carbon dioxide (CO2) emissions by 8.1 %. The ratio of nitrogen and potassium fertilizer input (NF/KF) is identified as the primary factor explaining the variation in N2O emissions, whereas the type of KF plays a crucial role in determining CH4 and CO2 emissions. We observed a significant negative correlation between the NF/KF ratio and response ratios of N2O and CH4 emissions and a positive correlation with CO2 emissions response ratios. Furthermore, our findings indicate that when the NF/KF ratio surpasses 1.97, 4.61, and 3.78, respectively, the impact of KF on reducing N2O, CH4, and CO2 emissions stabilizes. Overall, our results underscore that the global integration of KF into agricultural practices significantly influences N2O and CH4 emissions, while simultaneously reducing CO2 emissions at a large scale. These findings provide a foundational framework and practical guidance for optimizing fertilizer application in the development of GHG emission reduction models.

3.
Sci Total Environ ; 851(Pt 1): 158130, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-35995168

ABSTRACT

The imbalance of terrestrial carbon (C) inputs versus losses to extreme precipitation can have consequences for ecosystem carbon balances. However, the current understanding of how ecosystem processes will respond to predicted extreme dry and wet years is limited. The current study was conducted for three years field experiment to examine the effects of environmental variables and soil microbes on soil respiration (Rs), autotrophic respiration (Ra) and heterotrophic respiration (Rh) under extreme wet and dry conditions in mowed and unmowed grassland of Inner Mongolia. Across treatments (i.e. control, dry spring, wet spring, dry summer and wet summer), the mean of Rs was increased by 24.9 % and 24.1 % in the wet spring and wet summer precipitation treatments, respectively in mowed grassland. In other hand, the mean of Rs was decreased by -22.1 % and -3.5 % in dry spring and dry summer precipitation treatments, respectively in mowed grassland. The relative contribution of Rh and Ra to Rs showed a significant (p < 0.05) change among simulated precipitation treatments with the highest value (76.18 %) in wet summer and 26.41 % in dry summer, respectively under mowed grassland. Rs was significantly (p < 0.05) affected by the interactive effect of extreme precipitation and mowing treatments in 2020 and 2021. The effects of precipitation change via these biotic and abiotic factors explained by 52 % and 81 % in Ra and Rh, respectively in mowed grassland. The changes in microbial biomass carbon (MBC) and nitrogen (MBN) had significant (p < 0.05) direct effects on Rh in both mowed and unmowed grasslands. The influence of biotic and abiotic factors on Rs was stronger in mowed grasslands with higher standardized regression weights than in unmowed grassland (0.78 vs. 0.69). These findings highlight the importance of incorporating extreme precipitation events and mowing in regulating the responses of C cycling to global change in the semiarid Eurasian meadow steppe.


Subject(s)
Grassland , Soil , Carbon , Ecosystem , Nitrogen/analysis , Respiration
SELECTION OF CITATIONS
SEARCH DETAIL
...