Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36770150

ABSTRACT

The Dual-beam ion irradiation facility for Fusion materials (DiFU) has been developed and installed at the Ruder Boskovic Institute with the purpose to perform irradiation of samples of fusion materials by one or two ion beams. Ion beams are delivered to the DiFU chamber by a 6 MV EN Tandem Van de Graaff and a 1 MV HVE Tandetron accelerator, enabling irradiation of areas up to 30 × 30 mm2. The sample holder enables the three-dimensional positioning of samples that can be irradiated while being heated, cooled, or kept at room temperature. Ion fluxes are measured indirectly by the insertion of two large Faraday cups. Besides, the ion flux is monitored continuously by two sets of horizontal and vertical slits, which, in turn, define the limits of the irradiation area on the sample. Sample temperature and conditions during irradiation are additionally monitored by a set of thermocouples, an IR camera, and a video camera. Particular care is dedicated to the mitigation of carbon contamination during ion irradiation.

2.
Materials (Basel) ; 15(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36499848

ABSTRACT

Silicon plates were installed above the inner and outer divertor of the JET with the ITER-like wall (ILW) after the second and third ILW campaigns to monitor dust generation and deposition with the aim to determine the morphology and content of individual particles and co-deposits, including deuterium content. Particular interest was in metal-based particles: Be, W, steel, Cu. Ex-situ examination after two ILW campaigns was performed by a set of microscopy and ion beam methods including micro-beam nuclear reaction analysis and particle-induced X-ray emission. Different categories of Be-rich particles were found: co-deposits peeled-off from plasma-facing components (PFC), complex multi-element spherical objects, and solid metal splashes and regular spherical droplets. The fuel content on the two latter categories was at the level of 1 × 1016 at/cm-2 indicating that Be melting and splashing occurred in the very last phase of the second experimental campaign. The splashes adhere firmly to the substrate thus not posing risk of Be dust mobilisation. No tungsten droplets were detected. The only W-containing particles were fragments of tungsten coatings from the divertor tiles.

3.
Anal Chem ; 92(13): 9287-9294, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32484333

ABSTRACT

This work reports on the first systematic study using secondary ion mass spectrometry with MeV ions (MeV-SIMS) for analysis of synthetic organic pigments (SOPs) that can be usually found in modern and contemporary art paints. In order to prove the applicability of the method to different chemical classes of SOPs, 17 pigments were selected for the analyses. The focus was on blue and green phthalocyanines, yellow and red (naphthol AS) azo pigments, red quinacridone, anthraquinone, and diketopyrrolo-pyrrole pigments. Since there are no reference spectra available for this technique, pure pigment powders were measured first to create a database. Simple two-component paint systems were also prepared for testing purposes by mixing synthetic organic pigments with alkyd and acrylic binders. Commercial paints that contain the SOPs with identical C.I. numbers as in the prepared two-component samples were analyzed. All pigments were successfully identified in commercial products in the MeV-SIMS mass spectra through molecular and larger specific fragment ion peaks in the positive-ion mode. The main advantages of MeV-SIMS over other techniques used in SOPs identification, like pyrolysis gas chromatography mass spectrometry (Py-GC/MS), direct-temperature resolved mass spectrometry (DTMS), and laser desorption ionization mass spectrometry (LDIMS), can be summarized as follows: (i) pigments and binders can be detected simultaneously in the same mass spectrum acquired over a short measurement time (up to 500 s), (ii) only small sample flakes are required for the measurements, which are analyzed without any chemical treatment prior to the analyses, (iii) samples are not consumed during the analyses and can be reused for other measurements, e.g., multielemental analysis by other ion beam analysis (IBA) techniques, such as particle-induced X-ray emission (PIXE). Compared to, e.g., Raman spectroscopy, the significant benefit of MeV-SIMS is the exact identification of the SOPs in the paints even if pigments of similar structures are measured.

4.
Sci Rep ; 9(1): 13541, 2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31537827

ABSTRACT

The effects of radiation damage on materials are strongly dependant on temperature, making it arguably the most significant parameter of concern in nuclear engineering. Owing to the challenges and expense of irradiating and testing materials, material property data is often limited to few irradiation conditions and material variants. A new technique has been developed which enables the investigation of radiation damage of samples subject to a thermal gradient, whereby a wealth of data over a range of irradiation temperatures is produced from a single irradiation experiment. The results produced are practically inaccessible by use of multiple conventional isothermal irradiations. We present a precipitation-hardened copper alloy (CuCrZr) case-study irradiated with a linear temperature gradient between 125 and 440 °C. Subsequent micro-scale post irradiation characterisation (nanoindentation, transmission electron microscopy and atom probe tomography) highlight the capability to observe mechanical and microstructural changes over a wide range of irradiation temperatures. We observed irradiation-softening in CuCrZr that did not occur due to irradiation-enhanced aging of the Cr-precipitates. Excellent reproducibility of the new technique was demonstrated and replicated irradiation-hardening data from several isothermal neutron irradiation studies. Our new technique provides this data at a fraction of the time and cost required by conventional irradiation experiments.

5.
Anal Chem ; 90(9): 5744-5752, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29620878

ABSTRACT

Generation of metal dust in the JET tokamak with the ITER-like wall (ILW) is a topic of vital interest to next-step fusion devices because of safety issues with plasma operation. Simultaneous Nuclear Reaction Analysis (NRA) and Particle-Induced X-ray Emission (PIXE) with a focused four MeV 3He microbeam was used to determine the composition of dust particles related to the JET operation with the ILW. The focus was on "Be-rich particles" collected from the deposition zone on the inner divertor tile. The particles found are composed of a mix of codeposited species up to 120 µm in size with a thickness of 30-40 µm. The main constituents are D from the fusion fuel, Be and W from the main plasma-facing components, and Ni and Cr from the Inconel grills of the antennas for auxiliary plasma heating. Elemental concentrations were estimated by iterative NRA-PIXE analysis. Two types of dust particles were found: (i) larger Be-rich particles with Be concentrations above 90 at% with a deuterium presence of up to 3.4 at% and containing Ni (1-3 at%), Cr (0.4-0.8 at%), W (0.2-0.9 at%), Fe (0.3-0.6 at%), and Cu and Ti in lower concentrations and (ii) small particles rich in Al and/or Si that were in some cases accompanied by other elements, such as Fe, Cu, or Ti or W and Mo.

6.
Materials (Basel) ; 10(9)2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28878186

ABSTRACT

The aim of this work is to investigate the feasibility of ion beam analysis techniques for monitoring swift heavy ion track formation. First, the use of the in situ Rutherford backscattering spectrometry in channeling mode to observe damage build-up in quartz SiO₂ after MeV heavy ion irradiation is demonstrated. Second, new results of the in situ grazing incidence time-of-flight elastic recoil detection analysis used for monitoring the surface elemental composition during ion tracks formation in various materials are presented. Ion tracks were found on SrTiO₃, quartz SiO₂, a-SiO₂, and muscovite mica surfaces by atomic force microscopy, but in contrast to our previous studies on GaN and TiO₂, surface stoichiometry remained unchanged. Third, the usability of high resolution particle induced X-ray spectroscopy for observation of electronic dynamics during early stages of ion track formation is shown.

SELECTION OF CITATIONS
SEARCH DETAIL
...