Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 28(1): 135-42, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24285398

ABSTRACT

RATIONALE: Mixtures of ions produced in sources at atmospheric pressure, including chemical ionization (APCI) and electrospray ionization (ESI) can be simplified at or near ambient pressure using ion mobility based filters. METHODS: A low-mobility-pass filter (LMPF) based on a simple mechanical design and simple electronic control was designed, modeled and tested with vapors of 2-hexadecanone in an APCI source and with spray of peptide solutions in an ESI source. The LMPF geometry was planar and small (4 mm wide × 13 mm long) and electric control was through a symmetric waveform in low kHz with amplitude between 0 and 10 V. RESULTS: Computational models established idealized performance for transmission efficiency of ions of several reduced mobility coefficients over the range of amplitudes and were matched by computed values from ion abundances in mass spectra. The filter exhibited a broad response function, equivalent to a Bode Plot in electronic filters, suggesting that ion filtering could be done in blocks ~50 m/z units wide. CONCLUSIONS: The benefit of this concept is that discrimination against ions of high mobility is controlled by only a single parameter: waveform amplitude at fixed frequency. The effective removal of high mobility ions, those of low mass-to-charge, can be beneficial for applications with ion-trap-based mass spectrometers to remove excessive levels of solvent or matrix ions.


Subject(s)
Spectrometry, Mass, Electrospray Ionization/instrumentation , Computer Simulation , Equipment Design , Ions/analysis
2.
Eur J Mass Spectrom (Chichester) ; 16(3): 283-300, 2010.
Article in English | MEDLINE | ID: mdl-20530836

ABSTRACT

Mass spectrometry benefits from a flexible definition which equates it with many aspects of the science of matter in the ionized state. The field continues to expand rapidly, not only to encompass larger and more complex molecules through more powerful instruments, but simultaneously towards in-situ measurements made using smaller, more flexible and just-sufficiently-powerful instruments. The senior author has been fortunate to work in mass spectrometry from 1967 to the present and has been involved in a wide range of efforts which have covered analytical, biological, organic, instrumental and physical aspects of the subject. This effort has been made in the company of a remarkable set of colleagues. From this vantage, it is possible to look both backwards and forwards in this prospective and retrospective piece. This presentation involves a personal look at places, people, instruments, and concepts engaged in along a path through Mass Spectrometry. The journey goes from Natal, South Africa, via Cambridge, UK, through Kansas and on to Purdue University, in the great state of Indiana. It starts with natural products chemistry and moves to the physical chemistry of fragmentation and energy partitioning on to complex mixture analysis by tandem mass spectrometry and hence to the concepts of thermochemical determination by the kinetic method, preparation of materials by ion soft landing, the possible role of amino acid clusters in the origin of homochiral life, and the elaboration of a set of ambient ionization methods for chemical analysis performed using samples in their native state. Special attention is given to novel concepts and instrumentation and to the emerging areas of ambient ionization, molecular imaging and miniature mass spectrometers. Personal mass spectrometers appear to be just over the horizon as is the large-scale use of mass spectrometry in field-based analysis, including point-of-care medical diagnostics.


Subject(s)
Mass Spectrometry/methods , Mass Spectrometry/trends , England , Equipment Design , History, 20th Century , Indiana , Kansas , Mass Spectrometry/history , Mass Spectrometry/instrumentation , South Africa , Static Electricity , Surface Properties , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...