Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 38: 94-105, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27090590

ABSTRACT

UNLABELLED: ECM-based materials are appealing for tissue engineering strategies because they may promote stem cell recruitment, cell infiltration, and cell differentiation without the need to supplement with additional biological factors. Cartilage ECM has recently shown potential to be chondroinductive, particularly in a hydrogel-based system, which may be revolutionary in orthopedic medicine. However, hydrogels composed of natural materials are often mechanically inferior to synthetic materials, which is a major limitation for load-bearing tissue applications. The objective was therefore to create an unprecedented hydrogel derived entirely from native cartilage ECM that was both mechanically more similar to native cartilage tissue and capable of inducing chondrogenesis. Porcine cartilage was decellularized, solubilized, and then methacrylated and UV photocrosslinked to create methacrylated solubilized decellularized cartilage (MeSDCC) gels. Methacrylated gelatin (GelMA) was employed as a control for both biomechanics and bioactivity. Rat bone marrow-derived mesenchymal stem cells were encapsulated in these networks, which were cultured in vitro for 6weeks, where chondrogenic gene expression, the compressive modulus, swelling, and histology were analyzed. One day after crosslinking, the elastic compressive modulus of the 20% MeSDCC gels was 1070±150kPa. Most notably, the stress strain profile of the 20% MeSDCC gels fell within the 95% confidence interval range of native porcine cartilage. Additionally, MeSDCC gels significantly upregulated chondrogenic genes compared to GelMA as early as day 1 and supported extensive matrix synthesis as observed histologically. Given that these gels approached the mechanics of native cartilage tissue, supported matrix synthesis, and induced chondrogenic gene expression, MeSDCC hydrogels may be promising materials for cartilage tissue engineering applications. Future efforts will focus on improving fracture mechanics as well to benefit overall biomechanical performance. STATEMENT OF SIGNIFICANCE: Extracellular matrix (ECM)-based materials are appealing for tissue engineering strategies because they may promote stem cell recruitment, cell infiltration, and cell differentiation without the need to supplement with additional biological factors. One such ECM-based material, cartilage ECM, has recently shown potential to be chondroinductive; however, hydrogels composed of natural materials are often mechanically inferior to synthetic materials, which is a major limitation for load-bearing tissue applications. Therefore, this work is significant because we were the first to create hydrogels derived entirely from cartilage ECM that had mechanical properties similar to that of native cartilage until hydrogel failure. Furthermore, these hydrogels had a compressive modulus of 1070±150kPa, they were chondroinductive, and they supported extensive matrix synthesis. In the current study, we have shown that these new hydrogels may prove to be a promising biomaterial for cartilage tissue engineering applications.


Subject(s)
Cartilage, Articular/chemistry , Cartilage, Articular/metabolism , Extracellular Matrix/chemistry , Hydrogels/chemistry , Mesenchymal Stem Cells/metabolism , Animals , Cartilage, Articular/cytology , Male , Mesenchymal Stem Cells/cytology , Rats , Rats, Sprague-Dawley , Swine
2.
Ann Biomed Eng ; 44(6): 1863-80, 2016 06.
Article in English | MEDLINE | ID: mdl-26744243

ABSTRACT

Hydrogel precursors are liquid solutions that are prone to leaking from the defect site once implanted in vivo. Therefore, the objective of the current study was to create a hydrogel precursor that exhibited a yield stress. Additionally, devitalized cartilage extracellular matrix (DVC) was mixed with DVC that had been solubilized and methacrylated (MeSDVC) to create hydrogels that were chondroinductive. Precursors composed of 10% MeSDVC or 10% MeSDVC with 10% DVC were first evaluated rheologically, where non-Newtonian behavior was observed in all hydrogel precursors. Rat bone marrow stem cells (rBMSCs) were mixed in the precursor solutions, and the solutions were then crosslinked and cultured in vitro for 6 weeks with and without exposure to human transforming growth factor ß3 (TGF-ß3). The compressive modulus, gene expression, biochemical content, swelling, and histology of the gels were analyzed. The DVC-containing gels consistently outperformed the MeSDVC-only group in chondrogenic gene expression, especially at 6 weeks, where the relative collagen II expression of the DVC-containing groups with and without TGF-ß3 exposure was 40- and 78-fold higher, respectively, than that of MeSDVC alone. Future work will test for chondrogenesis in vivo and overall, these two cartilage-derived components are promising materials for cartilage tissue engineering applications.


Subject(s)
Bone Marrow Cells/metabolism , Cartilage/chemistry , Chondrogenesis , Extracellular Matrix/chemistry , Hydrogels/chemistry , Animals , Bone Marrow Cells/cytology , Humans , Male , Rats , Rats, Sprague-Dawley , Swine , Transforming Growth Factor beta3/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...