Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(9): 15483-15492, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859197

ABSTRACT

We present wavelength-division multiplexed coherent transmission in an O-band amplified link enabled by bismuth-doped fiber amplifiers (BDFAs). Transmission of 4 × 25 GBd DP-16QAM (4 × 200 Gb/s) is demonstrated over a single span of 50-km length, occupying a bandwidth of 4.7 THz across the wavelengths 1323 nm to 1351 nm.

2.
Opt Express ; 31(7): 10978-10990, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37155744

ABSTRACT

We implemented a bismuth-doped fiber amplifier (BDFA) based optical recirculating loop to investigate the performance of amplified O-band transmission over appreciable distances. Both single-wavelength and wavelength-division multiplexed (WDM) transmission were studied, with a variety of direct-detection modulation formats. We report on (a) transmission over lengths of up to 550 km in a single-channel 50-Gb/s system operating at wavelengths ranging from 1325 nm to 1350 nm, and (b) rate-reach products up to 57.6 Tb/s-km (after accounting for the forward error correction redundancy) in a 3-channel system.

3.
Opt Express ; 30(18): 32189-32203, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36242286

ABSTRACT

We report on what is to the best of our knowledge the longest 50-Gb/s/λ O-band wavelength-division multiplexed (WDM) transmission. A pair of in-house built bismuth-doped fiber amplifiers (BDFAs) and the use of Kramers-Kronig detection-assisted single-sideband transmission are adopted to overcome the fiber loss and chromatic dispersion, respectively, in a reach-extended O-band coarse WDM (CWDM) system with a channel spacing of ∼10 nm. Through experiments on an amplified 4×50-Gb/s/λ direct-detection system based on booster and pre-amp BDFAs, we show the superior performance of single-sideband transmission in terms of both optical signal-to-noise ratio sensitivity and uniformity in performance amongst CWDM channels relative to double-sideband transmission after both 75-km and 100-km lengths of single-mode fiber. As a result, up to 100-km reach with comparable performance at all 50-Gb/s channels was achieved without the need for in-line optical amplification.

4.
Opt Express ; 29(21): 33694-33702, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34809176

ABSTRACT

Beam tracking-and-steering is crucial for the operation of high-speed, narrow beam, optical wireless communication (OWC) systems. Using a system based on two sets of low-cost cameras for continuous beam tracking and a set of mirrors for steering, we demonstrate here a high-capacity (>1Tbit/s) ten-channel wavelength-division multiplexed (WDM) OWC system based on discrete multitone transmission. The results, which are achieved over a 3.5-m perpendicular distance and across a lateral coverage up to 1.8 m, constitute to the best of our knowledge, the highest aggregate OWC capacity at this coverage.

5.
Appl Opt ; 60(15): 4383-4390, 2021 May 20.
Article in English | MEDLINE | ID: mdl-34143128

ABSTRACT

The recent emergence of efficient O-band amplification technologies has enabled the consideration of O-band transmission beyond short reach. Despite the O-band being a low chromatic dispersion (CD) window, the impact of CD will become increasingly significant when extending the reach of direct-detection (DD) systems. In this work, we first numerically investigate the 3-dB bandwidth of single-mode fibers (SMF) and the CD-restricted transmission reach in intensity-modulation DD systems, confirming the significant difference between low- and high-dispersion O-band wavelengths. We then carry out experimental transmission studies over SMF for distances of up to 70 km at two different wavelengths, the low-dispersion 1320 nm and the more dispersive 1360 nm, enabled by the use of an O-band bismuth-doped fiber amplifier as a preamplifier at the receiver. We compare three 50-Gb/s optical DD formats, namely, Nyquist on-off keying (OOK), Nyquist 4-ary pulse amplitude modulation (PAM4) and Kramers-Kronig detection-assisted single-sideband quadrature phase shift keying (KK-QPSK) half-cycle subcarrier modulation. Our results show that at both wavelengths, OOK and QPSK exhibit better bit error rate performance than PAM4. When transmitting over 70-km of SMF at the less dispersive wavelength of 1320 nm, 50-Gb/s OOK modulation offers more than 1.5-dB optical power sensitivity improvement at the photodiode (PD) compared to 50-Gb/s QPSK. Conversely, at 1360 nm, the required optical power to the PD can be reduced by more than 3 dB by using QPSK instead of OOK.

6.
Opt Express ; 29(10): 15345-15355, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33985235

ABSTRACT

The recent emergence of bismuth-doped fiber amplifiers (BDFAs) offers the potential to transmit high-speed WDM signals over long distances in the O-band spectral region, thereby greatly enhancing the scope of systems utilizing these wavelengths. In this paper, we present a comprehensive experimental study on several basic characteristics of an O-band BDFA based on a phosphosilicate optical fiber, including the frequency-dependent noise figure, gain tilt (static and dynamic), transient response, and polarization dependent gain. We discuss our findings and their implications on the use of BDFA technology in high bit-rate multichannel systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...