Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol Sci ; 18(5): 1228-1234, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30843569

ABSTRACT

Solvent engineering as a crucial factor in determining the photovoltaic performance of perovskite solar cells has attracted much attention in recent years. Herein, we treat PbI2 and perovskite films with isopropyl alcohol, acetone, diethyl ether and dichloromethane, as standard solvents, in a modified two-step method. Meanwhile, triethylenetetramine (TETA) is introduced as a new reagent in solvent engineering for perovskite solar cell devices. Structural, optical and photovoltaic characteristics of the TETA-treated perovskite films are compared with those of the ones treated with different solvents. A shiny, pinhole-free and full-coverage texture with sufficiently large grain sizes is obtained in the presence of TETA, suggesting an efficient solvent engineering for perovskite layers. Moreover, the results reveal that residual PbI2 is completely removed and converted to a crystalline perovskite film. Amongst the PSC devices engineered with various solvents, the TETA-treated film exhibits a 55% increase in photoconversion efficiency compared to the control device with no solvent engineering.

2.
IEEE Trans Neural Netw ; 20(1): 45-60, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19068428

ABSTRACT

This paper presents a robust fault detection and isolation (FDI) scheme for a general class of nonlinear systems using a neural-network-based observer strategy. Both actuator and sensor faults are considered. The nonlinear system considered is subject to both state and sensor uncertainties and disturbances. Two recurrent neural networks are employed to identify general unknown actuator and sensor faults, respectively. The neural network weights are updated according to a modified backpropagation scheme. Unlike many previous methods developed in the literature, our proposed FDI scheme does not rely on availability of full state measurements. The stability of the overall FDI scheme in presence of unknown sensor and actuator faults as well as plant and sensor noise and uncertainties is shown by using the Lyapunov's direct method. The stability analysis developed requires no restrictive assumptions on the system and/or the FDI algorithm. Magnetorquer-type actuators and magnetometer-type sensors that are commonly employed in the attitude control subsystem (ACS) of low-Earth orbit (LEO) satellites for attitude determination and control are considered in our case studies. The effectiveness and capabilities of our proposed fault diagnosis strategy are demonstrated and validated through extensive simulation studies.


Subject(s)
Neural Networks, Computer , Nonlinear Dynamics , Algorithms , Altitude , Computer Simulation , Electromagnetic Fields , Spacecraft
SELECTION OF CITATIONS
SEARCH DETAIL
...