Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 111(3): 033903, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-23909326

ABSTRACT

Despite major importance in physics, biology, and other sciences, the optical sensing of nanoscale structures in the far zone remains an open problem due to the fundamental diffraction limit of resolution. We establish that the expected value of spectral variance (Σ[over ˜](2)) of a far-field, diffraction-limited microscope image can quantify the refractive-index fluctuations of a label-free, weakly scattering sample at subdiffraction length scales. We report the general expression of Σ[over ˜] for an arbitrary refractive-index distribution. For an exponential refractive-index spatial correlation, we obtain a closed-form solution of Σ[over ˜] that is in excellent agreement with three-dimensional finite-difference time-domain solutions of Maxwell's equations. Sensing complex inhomogeneous media at the nanoscale can benefit fields from material science to medical diagnostics.


Subject(s)
Interferometry/methods , Models, Theoretical , Nanotechnology/methods , Refractometry/methods , Light , Scattering, Radiation
2.
Opt Lett ; 37(10): 1601-3, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22627509

ABSTRACT

Various staining techniques are commonly used in biomedical research to investigate cellular morphology. By inducing absorption of light, staining dyes change the intracellular refractive index due to the Kramers-Kronig relationship. We present a method for creating 2D maps of real and imaginary refractive indices of stained biological cells using their thickness and absorptance. We validate our technique on dyed polystyrene microspheres and quantify the alteration in refractive index of stained biological cells. We reveal that specific staining of individual organelles can increase their scattering cross-section by orders of magnitudes, implying a major impact in the field of biophotonics.


Subject(s)
Epithelial Cells/cytology , Epithelial Cells/metabolism , Optical Phenomena , Staining and Labeling , Eosine Yellowish-(YS)/metabolism , Hematoxylin/metabolism , Intracellular Space/metabolism
3.
IEEE Trans Neural Syst Rehabil Eng ; 9(4): 346-54, 2001 Dec.
Article in English | MEDLINE | ID: mdl-12018647

ABSTRACT

Improving the control of artificial arms remains a considerable challenge. It may be possible to graft remaining peripheral nerves in an amputated limb to spare muscles in or near the residual limb and use these nerve-muscle grafts as additional myoelectric control signals. This would allow simultaneous control of multiple, degrees of freedom (DOF) and could greatly improve the control of artificial limbs. For this technique to be successful, the electromyography (EMG) signals from the nerve-muscle grafts would need to be independent of each other with minimal crosstalk. To study EMG signal propagation and quantify crosstalk, finite element (FE) models were developed in a phantom-arm model. The models were validated with experimental data collected by applying sinusoidal excitations to a phantom-arm model and recording the surface electric potential distribution. There was a very high correlation (r > 0.99) between the FEM data and the experimental data, with the error in signal magnitude generally less than 5%. Simulations were then performed using muscle dielectric properties with static, complex, and full electromagnetic solvers. The results indicate that significant displacement currents can develop (> 50% of total current) and that the fall-off of surface signal power varies with how the signal source is modeled. Index Terms-Control, electromyography (EMG), finite element (FE), modeling, prosthesis.


Subject(s)
Arm/physiology , Artificial Limbs , Body Surface Potential Mapping/methods , Electromyography/methods , Finite Element Analysis , Models, Biological , Computer Simulation , Electric Conductivity , Electromagnetic Fields , Humans , Muscle, Skeletal/physiology , Neuromuscular Junction/physiopathology , Reproducibility of Results
4.
Opt Express ; 9(8): 389-99, 2001 Oct 08.
Article in English | MEDLINE | ID: mdl-19424356

ABSTRACT

We have derived the signal-to-noise ratio in direct-detection Random-Modulation Continuous-Wave (RM-CW) lidar in the presence of colored additive noise. In contrast to a known formula derived for the photon shot-noise regime, which may adequately describe experimental conditions in the near-infrared, our result is applicable mainly at longer, mid-infrared wavelengths. Unlike the former formula, our result is explicitly dependent on the pseudorandom code (PRC) used for modulation. Three known modulation codes, the M-, A1-, and A2-sequence are compared and shown to have practically equivalent signal and noise properties (provided that clutter inherent in the A1- and A2-sequence is neglected), except that the M-sequence has a near-zero-frequency noise pickup that degrades its performance in real measurement systems. This difference provides an alternative explanation of a better performance of the A1-/A2-sequence in a previous experiment [3], carried out in the near-infrared. It suggests the presence of an additive noise component and thus some applicability of our result also in near-infrared lidar. A need for balanced sequences - particularly in the mid-infrared - is explained, although in a different way than previously suggested in near-infrared, photon shot noise-limited lidar. Additional, sinusoidal carrier modulation is considered and shown to have significant drawbacks. Our results allow comparison of given modulation sequences, and construction of improved ones. Interestingly, the improved sequences will possess less "random" characteristics, seemingly against the underlying concept of random modulation.

5.
IEEE Trans Biomed Eng ; 45(12): 1470-9, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9835195

ABSTRACT

A novel focused active microwave system is investigated for detecting tumors in the breast. In contrast to X-ray and ultrasound modalities, the method reviewed here exploits the breast-tissue physical properties unique to the microwave spectrum, namely, the translucent nature of normal breast tissues and the high dielectric contrast between malignant tumors and surrounding lesion-free normal breast tissues. The system uses a pulsed confocal technique and time-gating to enhance the detection of tumors while suppressing the effects of tissue heterogeneity and absorption. Using published data for the dielectric properties of normal breast tissues and malignant tumors, we have conducted a two-dimensional (2-D) finite-difference time-domain (FDTD) computational electromagnetics analysis of the system. The FDTD simulations showed that tumors as small as 2 mm in diameter could be robustly detected in the presence of the background clutter generated by the heterogeneity of the surrounding normal tissue. Lateral spatial resolution of the tumor location was found to be about 0.5 cm.


Subject(s)
Breast Neoplasms/diagnosis , Microwaves , Breast/physiology , Breast Neoplasms/physiopathology , Computer Simulation , Electromagnetic Phenomena , Female , Humans , Microscopy, Confocal , Signal Processing, Computer-Assisted
6.
IEEE Trans Biomed Eng ; 45(8): 1067-76, 1998 Aug.
Article in English | MEDLINE | ID: mdl-9691582

ABSTRACT

Transverse electromagnetic (TEM) cells can be used for exposing biological culture specimens to electromagnetic fields and observing possible anomalous effects. The uniformity of field exposure is critical to quantifying the biological response versus the electromagnetic dose. Standing waves and other electromagnetic field nonuniformities can cause nonuniform exposure. This paper reports the results of high-resolution three-dimensional finite-difference time-domain (FDTD) simulations of a complete TEM cell designed for operation at 837 MHz. Several different cases were studied in which the number of culture dishes, the depth of the culture liquid, and the orientation of the culture dishes were varied. Further, the effect of the culture-dish glass bottom thickness and the meniscus of the liquid medium were examined. The FDTD results show that there is a significant nonuniform field and specific absorption rate (SAR) distribution within the culture medium for each case examined. Hence, biological dose-response experiments using the TEM cells should account for the possibility of strong localized SAR peaking in the culture media to provide useful data in setting exposure standards for wireless communications.


Subject(s)
Cell Culture Techniques/methods , Electromagnetic Fields , Models, Biological , Culture Media , Time Factors
8.
Opt Lett ; 23(15): 1155-7, 1998 Aug 01.
Article in English | MEDLINE | ID: mdl-18087458

ABSTRACT

The imaging properties of the transmission-illumination mode of a scanning near-field optical microscope are investigated. Three-dimensional calculations of the power transmitted into classically allowed and forbidden regions for a nonsymmetrically positioned amplitude object are implemented by use of the finite-difference time-domain solution of Maxwell's equations. The evolution of the images with the distance from the object as well as the effect of the polarization of the illumination is shown. The computations show that for applications involving the imaging of an amplitude object, the use of the allowed light is preferred. Collection of light from both the allowed and the forbidden zones leads to degraded contrast and resolution.

9.
Opt Lett ; 22(16): 1244-6, 1997 Aug 15.
Article in English | MEDLINE | ID: mdl-18185808

ABSTRACT

We report the realization and demonstration of novel semiconductor waveguide-coupled microcavity ring and disk resonators. For a 10.5-microm-diameter disk resonator, we measure a finesse of 120, a resonant linewidth of 0.18 nm, and a free-spectral range of 21.6 nm in the 1.55-mum-wavelength region. We present the nanofabrication methods and the experimental results for 10.5- and 20.5-mum-diameter ring and disk resonators to show the feasibility of such devices.

10.
Opt Lett ; 18(7): 491-3, 1993 Apr 01.
Article in English | MEDLINE | ID: mdl-19802177

ABSTRACT

We present what are to our knowledge first-time calculations from vector nonlinear Maxwell's equations of femtosecond soliton propagation and scattering, including carrier waves, in two-dimensional dielectric waveguides. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and the nonlinear convolution accounts for two quantum effects, the Kerr and Raman interactions. By retaining the optical carrier, the new method solves for fundamental quantities-optical electric and magnetic fields in space and time-rather than a nonphysical envelope function. It has the potential to provide an unprecedented two- and three-dimensional modeling capability for millimeter-scale integrated-optical circuits with submicrometer engineered inhomogeneities.

11.
12.
IEEE Trans Biomed Eng ; 39(3): 226-37, 1992 Mar.
Article in English | MEDLINE | ID: mdl-1555852

ABSTRACT

Developments in finite-difference time-domain (FD-TD) computational modeling of Maxwell's equations, super-computer technology, and computed tomography (CT) imagery open the possibility of accurate numerical simulation of electromagnetic (EM) wave interactions with specific, complex, biological tissue structures. One application of this technology is in the area of treatment planning for EM hyperthermia. In this paper, we report the first highly automated CT image segmentation and interpolation scheme applied to model patient-specific EM hyperthermia. This novel system is based on sophisticated tools from the artificial intelligence, computer vision, and computer graphics disciplines. It permits CT-based patient-specific hyperthermia models to be constructed without tedious manual contouring on digitizing pads or CRT screens. The system permits in principle near real-time assistance in hyperthermia treatment planning. We apply this system to interpret actual patient CT data, reconstructing a 3-D model of the human thigh from a collection of 29 serial CT images at 10 mm intervals. Then, using FD-TD, we obtain 2-D and 3-D models of EM hyperthermia of this thigh due to a waveguide applicator. We find that different results are obtained from the 2-D and 3-D models, and conclude that full 3-D tissue models are required for future clinical usage.


Subject(s)
Computer Simulation , Hyperthermia, Induced/methods , Image Processing, Computer-Assisted , Models, Biological , Electromagnetic Fields , Humans , Neural Networks, Computer , Thigh/diagnostic imaging , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...