Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (136)2018 06 12.
Article in English | MEDLINE | ID: mdl-29985365

ABSTRACT

A microwave deposition technique for silanes, previously described for production of oleophobic fabrics, is adapted to provide a fabric support material that can be subsequently treated by dip coating. Dip coating with a sol preparation provides a supported porous layer on the fabric. In this case, the porous layer is a porphyrin functionalized sorbent system based on a powdered material that has been demonstrated previously for the capture and conversion of phosgene. A representative coating is applied to cotton fabric at a loading level of 10 mg/g. This coating has minimal impact on water vapor transport through the fabric (93% of the support fabric rate) while significantly reducing transport of 2-chloroethyl ethyl sulfide (CEES) through the material (7% of support fabric rate). The described approaches are suitable for use with other fabrics providing amine and hydroxyl groups for modification and can be used in combination with other sol preparations to produce varying functionality.


Subject(s)
Organosilicon Compounds/chemistry , Porosity
2.
Materials (Basel) ; 10(6)2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28773042

ABSTRACT

Biodiesel is produced by transesterification of animal fat, vegetable oil, or waste cooking oil with alcohol. After production costs, the economic viability of biodiesel is dependent on what steps are necessary to remove impurities following synthesis and the effectiveness of quality control analysis. Solid-phase extraction offers a potentially advantageous approach in biodiesel processing applications. Nanoporous scaffolds were investigated for adsorption of glycerol, a side product of biodiesel synthesis that is detrimental to engine combustion when present. Materials were synthesized with varying pore wall composition, including ethane and diethylbenzene bridging groups, and sulfonated to promote hydrogen bonding interactions with glycerol. Materials bearing sulfonate groups throughout the scaffold walls as well as those post-synthetically grafted onto the surfaces show notably superior performance for uptake of glycerol. The sorbents are effective when used in biodiesel mixtures, removing greater than 90% of glycerol from a biodiesel preparation.

3.
Materials (Basel) ; 6(4): 1403-1419, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-28809217

ABSTRACT

Sorbent materials were developed utilizing two morphological structures, comprising either hexagonally packed pores (HX) or a disordered pore arrangement (CF). The sorbents were functionalized with combinations of two types of alkylammonium groups. When capture of perchlorate by the sorbents was compared, widely varying performance was noted as a result of differing morphology and/or functional group loading. A material providing improved selectivity for perchlorate over perrhenate was synthesized with a CF material using N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride. Materials were applied in batch and column formats. Binding isotherms followed the behavior expected for a system in which univalent ligands of varying affinity compete for immobilized sites. Performance of the sorbents was also compared to that of commercial Purolite materials.

4.
Sensors (Basel) ; 12(11): 14953-67, 2012 Nov 06.
Article in English | MEDLINE | ID: mdl-23202195

ABSTRACT

We have previously described the application of novel porous organosilicate materials to the preconcentration of nitroenergetic targets from aqueous solution prior to HPLC analysis. The performance of the sorbents and the advantages of these types of materials over commercially available solid phase extraction sorbents have been demonstrated. Here, the development of systems for application of those sorbents to in situ monitoring is described. Considerations such as column pressure, particulate filtration, and component durability are discussed. The diameter of selected column housings, the sorbent bed depth, and the frits utilized significantly impact the utility of the sorbent columns in the prototype system. The impact of and necessity for improvements in the morphological characteristics of the sorbents as they relate to reduction in column pressure are detailed. The results of experiments utilizing a prototype system are presented. Data demonstrating feasibility for use of the sorbents in preconcentration prior to ion mobility spectrometry is also presented.


Subject(s)
Environmental Monitoring , Nitrogen Compounds/analysis , Water Pollutants, Chemical/analysis , Chromatography, High Pressure Liquid , Microscopy, Electron, Scanning , Solid Phase Extraction , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...