Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Reports ; 18(8): 1657-1671, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37295423

ABSTRACT

Pituitary organoids are promising graft sources for transplantation in treatment of hypopituitarism. Building on development of self-organizing culture to generate pituitary-hypothalamic organoids (PHOs) using human pluripotent stem cells (hPSCs), we established techniques to generate PHOs using feeder-free hPSCs and to purify pituitary cells. The PHOs were uniformly and reliably generated through preconditioning of undifferentiated hPSCs and modulation of Wnt and TGF-ß signaling after differentiation. Cell sorting using EpCAM, a pituitary cell-surface marker, successfully purified pituitary cells, reducing off-target cell numbers. EpCAM-expressing purified pituitary cells reaggregated to form three-dimensional pituitary spheres (3D-pituitaries). These exhibited high adrenocorticotropic hormone (ACTH) secretory capacity and responded to both positive and negative regulators. When transplanted into hypopituitary mice, the 3D-pituitaries engrafted, improved ACTH levels, and responded to in vivo stimuli. This method of generating purified pituitary tissue opens new avenues of research for pituitary regenerative medicine.


Subject(s)
Adrenocorticotropic Hormone , Pluripotent Stem Cells , Mice , Animals , Humans , Epithelial Cell Adhesion Molecule , Cell Culture Techniques/methods , Cell Differentiation
2.
Stem Cell Reports ; 18(4): 869-883, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36963388

ABSTRACT

When damaged, restoring the function of the hypothalamus is currently impossible. It is unclear whether neural stem cells exist in the hypothalamus. Studies have reported that adult rodent tanycytes around the third ventricle function as hypothalamic neural stem cell-like cells. However, it is currently impossible to collect periventricular cells from humans. We attempted to generate hypothalamic neural stem cell-like cells from human embryonic stem cells (ESCs). We focused on retina and anterior neural fold homeobox (RAX) because its expression is gradually restricted to tanycytes during the late embryonic stage. We differentiated RAX::VENUS knockin human ESCs (hESCs) into hypothalamic organoids and sorted RAX+ cells from mature organoids. The isolated RAX+ cells formed neurospheres and exhibited self-renewal and multipotency. Neurogenesis was observed when neurospheres were transplanted into the mouse hypothalamus. We isolated RAX+ hypothalamic neural stem cell-like cells from wild-type human ES organoids. This is the first study to differentiate human hypothalamic neural stem cell-like cells from pluripotent stem cells.


Subject(s)
Neural Stem Cells , Pluripotent Stem Cells , Mice , Animals , Humans , Cell Differentiation/physiology , Neurogenesis/physiology , Hypothalamus/metabolism
3.
Front Endocrinol (Lausanne) ; 14: 1130465, 2023.
Article in English | MEDLINE | ID: mdl-36936140

ABSTRACT

Introduction: The pituitary gland, regulating various hormones, is central in the endocrine system. As spontaneous recovery from hypopituitarism is rare, and exogenous-hormone substitution is clumsy, pituitary replacement via regenerative medicine, using pluripotent stem cells, is desirable. We have developed a differentiation method that in mice yields pituitary organoids (POs) derived from human embryonic stem cells (hESC). Efficacy of these POs, transplanted subcutaneously into hypopituitary mice, in reversing hypopituitarism was studied. Methods: hESC-derived POs were transplanted into inguinal subcutaneous white adipose tissue (ISWAT) and beneath dorsal skin, a relatively avascular region (AR), of hypophysectomized severe combined immunodeficient (SCID) mice. Pituitary function was evaluated thereafter for ¾ 6mo, assaying basal plasma ACTH and ACTH response to corticotropin-releasing hormone (CRH) stimulation. Histopathologic examination of organoids 150d after transplantation assessed engraftment. Some mice received an inhibitor of vascular endothelial growth factor (VEGF) to permit assessment of how angiogenesis contributed to subcutaneous engraftment. Results: During follow-up, both basal and CRH-stimulated plasma ACTH levels were significantly higher in the ISWAT group (p < 0.001 - 0.05 and 0.001 - 0.005, respectively) than in a sham-operated group. ACTH secretion also was higher in the ISWAT group than in the AR group. Histopathologic study found ACTH-producing human pituitary-cell clusters in both groups of allografts, which had acquired a microvasculature. POs qPCR showed expression of angiogenetic factors. Plasma ACTH levels decreased with VEGF-inhibitor administration. Conclusions: Subcutaneous transplantation of hESC-derived POs into hypopituitary SCID mice efficaciously renders recipients ACTH-sufficient.


Subject(s)
Human Embryonic Stem Cells , Hypopituitarism , Pituitary Diseases , Humans , Mice , Animals , Human Embryonic Stem Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Adrenocorticotropic Hormone/metabolism , Corticotropin-Releasing Hormone/metabolism , Mice, SCID , Pituitary Gland/metabolism , Pituitary Diseases/metabolism , Hypopituitarism/metabolism
4.
Sci Rep ; 12(1): 17381, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36253431

ABSTRACT

Familial neurohypophyseal diabetes insipidus (FNDI) is a degenerative disease of vasopressin (AVP) neurons. Studies in mouse in vivo models indicate that accumulation of mutant AVP prehormone is associated with FNDI pathology. However, studying human FNDI pathology in vivo is technically challenging. Therefore, an in vitro human model needs to be developed. When exogenous signals are minimized in the early phase of differentiation in vitro, mouse embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs) differentiate into AVP neurons, whereas human ESCs/iPSCs die. Human ESCs/iPSCs are generally more similar to mouse epiblast stem cells (mEpiSCs) compared to mouse ESCs. In this study, we converted human FNDI-specific iPSCs by the naive conversion kit. Although the conversion was partial, we found improved cell survival under minimal exogenous signals and differentiation into rostral hypothalamic organoids. Overall, this method provides a simple and straightforward differentiation direction, which may improve the efficiency of hypothalamic differentiation.


Subject(s)
Diabetes Insipidus, Neurogenic , Induced Pluripotent Stem Cells , Animals , Cell Differentiation , Humans , Hypothalamus/metabolism , Induced Pluripotent Stem Cells/metabolism , Mice , Neurons/metabolism , Vasopressins/metabolism
5.
Front Endocrinol (Lausanne) ; 13: 941166, 2022.
Article in English | MEDLINE | ID: mdl-35903276

ABSTRACT

Human stem cell-derived organoid culture enables the in vitro analysis of the cellular function in three-dimensional aggregates mimicking native organs, and also provides a valuable source of specific cell types in the human body. We previously established organoid models of the hypothalamic-pituitary (HP) complex using human pluripotent stem cells. Although the models are suitable for investigating developmental and functional HP interactions, we consider that isolated pituitary cells are also useful for basic and translational research on the pituitary gland, such as stem cell biology and regenerative medicine. To develop a method for the purification of pituitary cells in HP organoids, we performed surface marker profiling of organoid cells derived from human induced pluripotent stem cells (iPSCs). Screening of 332 human cell surface markers and a subsequent immunohistochemical analysis identified epithelial cell adhesion molecule (EpCAM) as a surface marker of anterior pituitary cells, as well as their ectodermal precursors. EpCAM was not expressed on hypothalamic lineages; thus, anterior pituitary cells were successfully enriched by magnetic separation of EpCAM+ cells from iPSC-derived HP organoids. The enriched pituitary population contained functional corticotrophs and their progenitors; the former responded normally to a corticotropin-releasing hormone stimulus. Our findings would extend the applicability of organoid culture as a novel source of human anterior pituitary cells, including stem/progenitor cells and their endocrine descendants.


Subject(s)
Induced Pluripotent Stem Cells , Pituitary Hormones, Anterior , Pluripotent Stem Cells , Biomarkers/metabolism , Epithelial Cell Adhesion Molecule/metabolism , Humans , Organoids/metabolism , Pituitary Gland/metabolism , Pituitary Hormones, Anterior/metabolism
6.
J Pharmacol Exp Ther ; 371(3): 692-702, 2019 12.
Article in English | MEDLINE | ID: mdl-31578257

ABSTRACT

In our drug discovery program, we identified a novel orally available and brain-penetrant phosphodiesterase (PDE) 1 inhibitor, 3-methyl-7-(tetrahydro-2H-pyran-4-yl)-2-{[trans-4-(trifluoromethyl)cyclohexyl]-methoxy}imidazo[5,1-f][1,2,4]triazin-4(3H)-one (DSR-141562). In the present study, we characterized the preclinical profile of DSR-141562. This compound has preferential selectivity for predominantly brain-expressed PDE1B over other PDE1 family members, and high selectivity for the PDE1 family over other PDE families and 65 other tested biologic targets. Oral administration of DSR-141562 at 10 mg/kg slightly elevated the cGMP concentration, and it potently enhanced the increase of cGMP induced by a dopamine D1 receptor agonist in mouse brains. The cGMP level in monkey cerebrospinal fluid was also elevated after treatment with DSR-141562 at 30 and 100 mg/kg and could be used as a translational biomarker. Since PDE1B is believed to regulate dopaminergic and glutamatergic signal transduction, we evaluated the effects of this compound using schizophrenia-related behavioral assays. DSR-141562 at 3-30 mg/kg potently inhibited methamphetamine-induced locomotor hyperactivity in rats, while it had only minimal effects on the spontaneous locomotor activity. Furthermore, DSR-141562 at 1-100 mg/kg did not induce any signs of catalepsy in rats. DSR-141562 at 0.3-3 mg/kg reversed social interaction and novel object recognition deficits induced by repeated treatment with an N-methyl-D-aspartate receptor antagonist, phencyclidine, in mice and rats, respectively. In common marmosets, DSR-141562 at 3 and 30 mg/kg improved the performance in object retrieval with detour tasks. These results suggest that DSR-141562 is a therapeutic candidate for positive, negative, and cognitive symptoms in schizophrenia. SIGNIFICANCE STATEMENT: This is the first paper showing that a phosphodiesterase 1 inhibitor is efficacious in animal models for positive and negative symptoms associated with schizophrenia. Furthermore, we demonstrated that this compound improved cognitive function in the common marmoset, a nonhuman primate.


Subject(s)
Cognition/drug effects , Cyclic Nucleotide Phosphodiesterases, Type 1/antagonists & inhibitors , Imidazoles/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Schizophrenia/drug therapy , Triazines/pharmacology , Animals , Callithrix , Cyclic GMP/analysis , Cyclic GMP/cerebrospinal fluid , Disease Models, Animal , Female , Imidazoles/pharmacokinetics , Male , Mice , Mice, Inbred ICR , Motor Activity/drug effects , Proto-Oncogene Proteins c-fos/genetics , Rats, Long-Evans , Receptors, Dopamine D1/physiology , Triazines/pharmacokinetics
7.
Anal Bioanal Chem ; 401(4): 1385-92, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21725829

ABSTRACT

A new method for simultaneous determination of histamine and prostaglandin D(2) (PGD(2)) by liquid chromatography-electrospray ionization tandem mass spectrometry operated in positive and negative ionization switching modes was developed and validated without a previous derivatization step. This method was used to measure histamine and PGD(2) release following degranulation of KU812 human basophilic cells, using pyrazol and d(4)-PGD(2) as internal standards. Analyses were performed on a liquid chromatography system employing a Cosmosil 5C(18) PAQ column and an isocratic elution with mixed solution of methanol-water (7:3, v/v) with 0.0015% trifluoroacetic acid at a flow rate of 0.2 mL/min. A triple-quadrupole mass spectrometer operating in selected reaction monitoring mode simultaneously monitored using the following transitions: positive m/z 112/95 for histamine and negative m/z 351/271 for PGD(2). The retention times of histamine and pyrazol were 4.2 and 5.0 min, respectively. PGD(2) and d(4)-PGD(2) had retention times of 8.5 min. The limits of detection were 0.3 and 0.5 ng/mL for histamine and PGD(2), respectively. The relative standard deviations of the retention time and peak area for histamine were between 1.6% and 7.7%, and were 1.2% and 7.8% for PGD(2). This method was used to evaluate the anti-allergic effects of 26 flavonoids and sodium cromoglicate which are first-line anti-allergic drugs. Of these compounds, baicalein and morin were the most potent inhibitors.


Subject(s)
Anti-Allergic Agents/analysis , Chromatography, Liquid , Flavonoids/analysis , Histamine/analysis , Prostaglandin D2/analysis , Spectrometry, Mass, Electrospray Ionization , Cell Line, Tumor , Humans , Limit of Detection , Molecular Structure , Time Factors
8.
Steroids ; 73(14): 1485-99, 2008 Dec 22.
Article in English | MEDLINE | ID: mdl-18824188

ABSTRACT

A single-chain Fv fragment (scFv) against estradiol-17beta (E(2)) was generated to begin the construction of a library of various mutated anti-steroid antibodies with an improved affinity and/or specificity. A hybridoma clone secreting a specific anti-E(2) antibody (Ab#E4-4) was established by the cell fusion using splenocytes from a mouse immunized with an immunogenic E(2)-carrier conjugate. DNA fragments encoding the variable heavy and light domains (V(H) and V(L)) of the Ab#E4-4 were cloned and combined to give the scFv gene fragment encoding the sequence 5'-V(H)-(GGGGS)(3)-V(L)-3'. Compared to the Ab#E4-4 Fab fragment, soluble scFv (scFv#E4-4) protein showed a similar affinity to E(2) (K(a)=8.6x10(7)M(-1)) and a similar cross-reaction profile. To further study the fundamentals for creating a comprehensive library of mutated scFvs, the scFvV(H) and V(L) genes were amplified using error-prone PCR conditions and the frequency and pattern of incorporated mutations were investigated. For this, regular Taq polymerase was used in the presence of unequal concentrations of dNTPs. At 1.0mM MnCl(2), the error frequency reached to 8.5% and 11% for the V(H) and V(L) respectively, although a significant transition/transversion bias was observed. ScFv#E4-4 and the mutated polyclonal scFvs were then displayed on filamentous phage under various packaging conditions. Cultivation of the transformed bacteria was more suitable at 25 degrees C than at higher temperatures for the packaging of scFv-bearing phagemid particles. Based on these experimental conditions, an scFv-displaying phage library, each scFv member in which has mutated complementarity-determining region (CDR) H2, H3, L1, and L3, was constructed. A soluble scFv clone (scFv#m1-e7) with a mutated amino acid (I-->V) in CDR L1, isolated from this library, showed threefold higher affinity (K(a)=2.6 x 10(8)M(-1)) than that of scFv#4-4.


Subject(s)
Antibodies, Monoclonal/immunology , Estradiol/genetics , Estradiol/immunology , Immunoglobulin Fragments/isolation & purification , Immunoglobulin Variable Region/isolation & purification , Peptide Library , Amino Acid Sequence , Animals , Base Sequence , Enzyme-Linked Immunosorbent Assay , Estrogens/immunology , Female , Hybridomas , Immunoglobulin Fragments/genetics , Immunoglobulin Fragments/immunology , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Mutagenesis , Polymerase Chain Reaction , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...