Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 28(8): 1397-1403, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29545102

ABSTRACT

Imidazo-[1, 2-a]pyrazine 1 is a potent inhibitor of Aurora A and B kinase in vitro and is effective in in vivo tumor models, but has poor oral bioavailbility and is unsuitable for oral dosing. We describe herein our effort to improve oral exposure in this class, resulting ultimately in the identification of a potent Aurora inhibitor 16, which exhibited good drug exposure levels across species upon oral dosing, and showed excellent in vivo efficacy in a mouse xenograft tumor model when dosed orally.


Subject(s)
Antineoplastic Agents/therapeutic use , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase B/antagonists & inhibitors , Imidazoles/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyrazines/therapeutic use , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Dogs , HCT116 Cells , Haplorhini , Histones/metabolism , Humans , Imidazoles/administration & dosage , Imidazoles/chemical synthesis , Imidazoles/pharmacokinetics , Mice , Phosphorylation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Pyrazines/administration & dosage , Pyrazines/chemical synthesis , Pyrazines/pharmacokinetics , Rats , Stereoisomerism , Xenograft Model Antitumor Assays
2.
Cancer Chemother Pharmacol ; 68(4): 923-33, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21298383

ABSTRACT

PURPOSE: Aurora kinases are required for orderly progression of cells through mitosis, and inhibition of these kinases by siRNA or small molecule inhibitors results in cell death. We previously reported the synthesis of SCH 1473759, a novel sub-nanomolar Aurora A/B inhibitor. METHODS: We utilized SCH 1473759 and a panel of tumor cell lines and xenograft models to gain knowledge about optimal dosing schedule and chemotherapeutic combinations for Aurora A/B inhibitors. RESULTS: SCH 1473759 was active against a large panel of tumor cell lines from different tissue origin and genetic backgrounds. Asynchronous cells required 24-h exposure to SCH 1473759 for maximal induction of >4 N DNA content and inhibition of cell growth. However, following taxane- or KSP inhibitor-induced mitotic arrest, less than 4-h exposure induced >4 N DNA content. This finding correlated with the ability of SCH 1473759 to accelerate exit from mitosis in response to taxane- and KSP inhibitor-induced arrest. We tested various dosing schedules in vivo and demonstrated SCH 1473759 dose- and schedule-dependent anti-tumor activity in four human tumor xenograft models. Further, the efficacy was enhanced in combination with taxanes and found to be most efficacious when SCH 1473759 was dosed 12-h post-taxane treatment. CONCLUSIONS: SCH 1473759 demonstrated potent mechanism-based activity, and activity was shown to be enhanced in combination with taxanes and KSP inhibitors. This information may be useful for optimizing the clinical efficacy of Aurora inhibitors.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Imidazoles/pharmacology , Kinesins/antagonists & inhibitors , Neoplasms/drug therapy , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrazines/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Aurora Kinase A , Aurora Kinases , Cell Line, Tumor , Drug Administration Schedule , Female , Humans , Imidazoles/administration & dosage , Male , Mice , Mice, Nude , Neoplasms/pathology , Pyrazines/administration & dosage , Taxoids/administration & dosage , Xenograft Model Antitumor Assays
3.
J Med Chem ; 54(1): 201-10, 2011 Jan 13.
Article in English | MEDLINE | ID: mdl-21128646

ABSTRACT

Aurora kinases are cell cycle regulated serine/threonine kinases that have been linked to cancer. Compound 1 was identified as a potent Aurora inhibitor but lacked oral bioavailability. Optimization of 1 led to the discovery of a series of fluoroamine and deuterated analogues, exemplified by compound 25, with an improved pharmacokinetic profile. We found that blocking oxidative metabolism at the benzylic position and decreasing the basicity of the amine are important to obtaining compounds with good biological profiles and oral bioavailability.


Subject(s)
Antineoplastic Agents/chemical synthesis , Fluorine , Imidazoles/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrazines/chemical synthesis , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Aurora Kinases , Biological Availability , Cell Line, Tumor , Deuterium , Dogs , Drug Screening Assays, Antitumor , Histones/metabolism , Humans , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Macaca fascicularis , Mice , Mice, Nude , Neoplasm Transplantation , Phosphorylation , Pyrazines/pharmacokinetics , Pyrazines/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Transplantation, Heterologous
4.
ACS Med Chem Lett ; 1(5): 214-8, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-24900197

ABSTRACT

The imidazo-[1,2-a]-pyrazine (1) is a dual inhibitor of Aurora kinases A and B with modest cell potency (IC50 = 250 nM) and low solubility (5 µM). Lead optimization guided by the binding mode led to the acyclic amino alcohol 12k (SCH 1473759), which is a picomolar inhibitor of Aurora kinases (TdF K d Aur A = 0.02 nM and Aur B = 0.03 nM) with improved cell potency (phos-HH3 inhibition IC50 = 25 nM) and intrinsic aqueous solubility (11.4 mM). It also demonstrated efficacy and target engagement in human tumor xenograft mouse models.

7.
Virology ; 349(1): 41-54, 2006 May 25.
Article in English | MEDLINE | ID: mdl-16494916

ABSTRACT

The CC-chemokine receptor 5 (CCR5) is the major coreceptor for macrophage-tropic (R5) HIV-1 strains. Several small molecule inhibitors of CCR5 that block chemokine binding and HIV-1 entry are being evaluated as drug candidates. Here we define how CCR5 antagonists TAK-779, AD101 (SCH-350581) and SCH-C (SCH-351125), which inhibit HIV-1 entry, interact with CCR5. Using a mutagenesis approach in combination with a viral entry assay to provide a direct functional read out, we tested predictions based on a homology model of CCR5 and analyzed the functions of more than 30 amino acid residues. We find that a key set of aromatic and aliphatic residues serves as a hydrophobic core for the ligand binding pocket, while E283 is critical for high affinity interaction, most likely by acting as the counterion for a positively charged nitrogen atom common to all three inhibitors. These results provide a structural basis for understanding how specific antagonists interact with CCR5, and may be useful for the rational design of new, improved CCR5 ligands.


Subject(s)
HIV Fusion Inhibitors/metabolism , Receptors, CCR5/metabolism , Amides/metabolism , Binding Sites/genetics , Cell Line , Cyclic N-Oxides/metabolism , HIV-1/growth & development , Humans , Models, Molecular , Molecular Structure , Mutagenesis, Site-Directed , Oximes , Piperidines/metabolism , Protein Structure, Secondary , Pyridines/metabolism , Quaternary Ammonium Compounds/metabolism , Receptors, CCR5/genetics
8.
Antimicrob Agents Chemother ; 49(12): 4911-9, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16304152

ABSTRACT

Inhibiting human immunodeficiency virus type 1 (HIV-1) infection by blocking the host cell coreceptors CCR5 and CXCR4 is an emerging strategy for antiretroviral therapy. Currently, several novel coreceptor inhibitors are being developed in the clinic, and early results have proven promising. In this report, we describe a novel CCR5 antagonist, vicriviroc (formerly SCH-D or SCH 417690), with improved antiviral activity and pharmacokinetic properties compared to those of SCH-C, a previously described CCR5 antagonist. Like SCH-C, vicriviroc binds specifically to the CCR5 receptor and prevents infection of target cells by CCR5-tropic HIV-1 isolates. In antiviral assays, vicriviroc showed potent, broad-spectrum activity against genetically diverse and drug-resistant HIV-1 isolates and was consistently more active than SCH-C in inhibiting viral replication. This compound demonstrated synergistic anti-HIV activity in combination with drugs from all other classes of approved antiretrovirals. Competition binding assays revealed that vicriviroc binds with higher affinity to CCR5 than SCH-C. Functional assays, including inhibition of calcium flux, guanosine 5'-[35S]triphosphate exchange, and chemotaxis, confirmed that vicriviroc acts as a receptor antagonist by inhibiting signaling of CCR5 by chemokines. Finally, vicriviroc demonstrated diminished affinity for the human ether a-go-go related gene transcript ion channel compared to SCH-C, suggesting a reduced potential for cardiac effects. Vicriviroc represents a promising new candidate for the treatment of HIV-1 infection.


Subject(s)
Anti-HIV Agents/pharmacology , CCR5 Receptor Antagonists , HIV-1/drug effects , Piperazines/pharmacology , Pyrimidines/pharmacology , Humans , Leukocytes, Mononuclear
9.
Arthritis Rheum ; 52(2): 627-36, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15693002

ABSTRACT

OBJECTIVE: Collagen-induced arthritis (CIA) in the rhesus monkey is a nonhuman primate model of rheumatoid arthritis (RA). The close phylogenetic relationship between humans and the rhesus monkey makes this model useful for the preclinical safety and efficacy testing of new therapies that are inactive in animals more distinctly related to humans. In this study, we tested the therapeutic potential of a novel, small molecular weight antagonist of CCR5, SCH-X, in this model. METHODS: CIA was induced in 10 rhesus monkeys. The animals were allocated to receive SCH-X or saline as the control (n = 5 in each group). Treatment was initiated on the day of CIA induction and continued for 45 days. Monkeys were monitored before and 63 days after CIA induction for macroscopic signs of clinical arthritis, such as soft-tissue swelling and body weight. Furthermore, markers of inflammation and joint degradation were monitored to follow the disease course. RESULTS: Only 2 of 5 animals in the SCH-X-treated group displayed prominent soft-tissue swelling, compared with all 5 saline-treated monkeys. In addition to the suppression of joint inflammation, treatment with SCH-X resulted in a reduction in joint destruction, as demonstrated by lower rates of urinary excretion of collagen crosslinks, with confirmation by histology. Whereas in all saline-treated monkeys, marked erosion of joint cartilage was observed, this was absent in 4 of the 5 SCH-X-treated monkeys. CONCLUSION: The systemic effects of treatment with SCH-X were a suppressed acute-phase reaction (reduction in C-reactive protein level) in the 3 treated monkeys with CIA that remained asymptomatic, and an altered antibody response toward type II collagen. The results suggest that the CCR5 antagonist SCH-X might have a strong clinical potential for treatment during periods of active inflammation, as seen in RA.


Subject(s)
Arthritis, Experimental/prevention & control , CCR5 Receptor Antagonists , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/pathology , Cartilage, Articular/pathology , Collagen Type II , Follow-Up Studies , Macaca mulatta , Male
10.
J Med Chem ; 47(10): 2405-8, 2004 May 06.
Article in English | MEDLINE | ID: mdl-15115380

ABSTRACT

The nature and the size of the benzylic substituent are shown to be the key to controlling receptor selectivity (CCR5 vs M1, M2) and potency in the title compounds. Optimization of the lead benzylic methyl compound 3 led to the methoxymethyl analogue 30, which had excellent receptor selectivity and oral bioavailability in rats and monkeys. Compound 30 (Sch-417690/Sch-D), a potent inhibitor of HIV-1 entry into target cells, is currently in clinical trials.


Subject(s)
Anti-HIV Agents/chemical synthesis , CCR5 Receptor Antagonists , HIV-1/drug effects , Piperazines/chemical synthesis , Piperidines/chemical synthesis , Potassium Channels, Voltage-Gated , Pyrimidines/chemical synthesis , Administration, Oral , Animals , Anti-HIV Agents/adverse effects , Anti-HIV Agents/pharmacology , Biological Availability , Brain/drug effects , Cation Transport Proteins/drug effects , Digestive System/drug effects , Ether-A-Go-Go Potassium Channels , HIV-1/isolation & purification , Humans , In Vitro Techniques , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/virology , Macaca fascicularis , Piperazines/adverse effects , Piperazines/chemistry , Piperazines/pharmacology , Piperidines/chemistry , Piperidines/pharmacology , Potassium Channels/drug effects , Pyrimidines/adverse effects , Pyrimidines/chemistry , Pyrimidines/pharmacology , Rats , Stereoisomerism , Structure-Activity Relationship
11.
J Virol ; 77(9): 5201-8, 2003 May.
Article in English | MEDLINE | ID: mdl-12692222

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) entry is mediated by the consecutive interaction of the envelope glycoprotein gp120 with CD4 and a coreceptor such as CCR5 or CXCR4. The CCR5 coreceptor is used by the most commonly transmitted HIV-1 strains that often persist throughout the course of infection. Compounds targeting CCR5-mediated entry are a novel class of drugs being developed to treat HIV-1 infection. In this study, we have identified the mechanism of action of two inhibitors of CCR5 function, SCH-350581 (AD101) and SCH-351125 (SCH-C). AD101 is more potent than SCH-C at inhibiting HIV-1 replication in primary lymphocytes, as well as viral entry and gp120 binding to cell lines. Both molecules also block the binding of several anti-CCR5 monoclonal antibodies that recognize epitopes in the second extracellular loop of CCR5. Alanine mutagenesis of the transmembrane domain of CCR5 suggests that AD101 and SCH-C bind to overlapping but nonidentical sites within a putative ligand-binding cavity formed by transmembrane helices 1, 2, 3, and 7. We propose that the binding of small molecules to the transmembrane domain of CCR5 may disrupt the conformation of its extracellular domain, thereby inhibiting ligand binding to CCR5.


Subject(s)
CCR5 Receptor Antagonists , Cyclic N-Oxides/pharmacology , HIV-1/drug effects , HIV-1/pathogenicity , Piperidines , Pyridines/pharmacology , Amino Acid Sequence , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , CD4-Positive T-Lymphocytes/virology , Cells, Cultured , HIV Envelope Protein gp120/metabolism , Humans , Membrane Fusion , Models, Molecular , Molecular Sequence Data , Oximes , Pyridines/chemistry , Receptors, CCR5/chemistry , Receptors, CCR5/genetics , Receptors, CCR5/metabolism , Virus Replication
13.
J Org Chem ; 67(4): 1171-7, 2002 Feb 22.
Article in English | MEDLINE | ID: mdl-11846659

ABSTRACT

Aryl carboxamides are useful structural units found in several biologically active compounds. Unlike their benzoic acid counterparts, fluorinated versions of naphthoic acids are relatively unknown. In connection with a recent project, we needed viable syntheses of several mono- and difluorinated naphthoic acids. Herein we describe the synthesis of 5-, 6-, 7-, and 8-fluoro-1-naphthalenecarboxylic acids and 5,7-, 5,8-, 6,7-, and 4,5-difluoro-1-naphthalenecarboxylic acids. The 5-fluoro derivative 1was obtained from the corresponding 5-bromo compound via electrophilic fluorination of the lithio-intermediate. The rest of the monofluoro (2, 3, and 4) and the difluoro acids (5, 6, and 7) were prepared by a new, general route which entailed the elaboration of commercial fluorinated phenylacetic acids to 2-(fluoroaryl)glutaric acids with differential ester groups; selective hydrolysis to a mono acid, intramolecular Friedel-Crafts cyclization, and aromatization furnished the target structures. An alternative process to assemble a naphthalene skeleton is also presented for the difluoro acids 5 and 6. Finally, 4,5-difluoro-1-naphthalenecarboxylic acid (8) was prepared expeditiously from 1,8-diaminonaphthalene by adapting classical reactions.

14.
Bioorg Med Chem Lett ; 12(5): 795-8, 2002 Mar 11.
Article in English | MEDLINE | ID: mdl-11859005

ABSTRACT

The synthesis and muscarinic binding properties of compounds based on the 1-[4-(4-arylsulfonyl)phenylmethyl]-4-(1-aroyl-4-piperidinyl)-piperazine skeleton are described. For compounds, substituted with appropriately configured methyl groups at the benzylic center and at the piperazine 2-position, high levels of selective, M(2) subtype affinity could be obtained, particularly when the terminal N-aroyl residue was ortho-substituted.


Subject(s)
Piperazines/chemical synthesis , Piperazines/metabolism , Receptors, Muscarinic/metabolism , Binding Sites , Ligands , Molecular Structure , Piperazines/chemistry , Receptor, Muscarinic M1 , Receptor, Muscarinic M2 , Structure-Activity Relationship
15.
Bioorg Med Chem Lett ; 12(5): 791-4, 2002 Mar 11.
Article in English | MEDLINE | ID: mdl-11859004

ABSTRACT

A novel series of 2-(R)-methyl-substituted piperazines (e.g., 2) is described. They are potent M(2) selective ligands that have >100-fold selectivity versus the M(1) receptor. In the rat microdialysis assay, compound 14 showed significantly enchanced levels of acetylcholine after oral administration.


Subject(s)
Piperazines/chemical synthesis , Piperazines/metabolism , Receptors, Muscarinic/metabolism , Acetylcholine/metabolism , Administration, Oral , Animals , Binding Sites , Ligands , Microdialysis , Molecular Structure , Piperazines/chemistry , Rats , Receptor, Muscarinic M1 , Receptor, Muscarinic M2
SELECTION OF CITATIONS
SEARCH DETAIL
...