Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 6(2): e03352, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32055741

ABSTRACT

This study was designed to evaluate the effects of DS37001789, a novel and highly potent urotensin II (U-II) receptor (GPR14) antagonist, against mortality, hypertrophy, and cardiac dysfunction in pressure-overload hypertrophy by transverse aortic constriction (TAC) in mice. In addition, we analyzed the phenotype of GPR14 knockout (KO) mice after TAC induction to confirm the contribution of the U-II/GPR14 system. The oral administration of 0.2% DS37001789 to TAC mice for 12 weeks significantly ameliorated the mortality rate and 0.2% DS37001789 for 4 weeks significantly improved cardiac function by pressure-volume analysis. GPR14 expression was significantly upregulated in the left ventricle in the TAC mice treated with 0.2% DS37001789. Moreover, we confirmed that the significant amelioration of mortality was accomplished by the inhibition of cardiac enlargement and the improvement of cardiac function in GPR14 KO mice after TAC surgery. These results suggest that the U-II/GPR14 system contributes to the progression of heart failure and its blockade ameliorates the mortality via improved cardiac function. The U-II/GPR14 system may thus be an attractive target for treating heart failure with pathological cardiac hypertrophy and DS37001789 may be a novel therapeutic agent for heart failure in patients with pressure-overload conditions such as hypertension and aortic valve stenosis.

2.
J Cardiovasc Pharmacol ; 73(1): 15-21, 2019 01.
Article in English | MEDLINE | ID: mdl-30608334

ABSTRACT

This study was designed to characterize the pharmacological profile of DS37001789, which is a structurally novel piperazine derivative that acts as urotensin II (U-II) receptor antagonist. DS37001789 inhibited [I]-U-II binding to human GPR14, U-II receptor, with an IC50 value 0.9 nM. Its potency was superior to that of ACT-058362, a nonpeptide U-II receptor antagonist whose IC50 was 120 nM. Human U-II-induced vascular contraction was blocked by DS37001789. The dose-response curve of DS37001789 in rats and monkeys did not show species differences, and it shifted to the right without any effects on the maximum vascular response. Moreover, orally administered DS37001789 dose-dependently prevented human U-II-induced blood pressure elevation in mice, and this effect was significant at dose and higher dose (30 and 100 mg/kg), and its potency was superior to that of ACT-058362 (100 mg/kg). These results suggest that DS37001789 is a highly potent U-II receptor antagonist both in vitro and in vivo, with no marked species difference. DS37001789 would be a useful tool to clarify the physiological roles of U-II/GPR14 system. In addition, it can serve as a novel therapeutic agent for diseases in which the U-II/GPR14 system is upregulated, such as hypertension, heart failure, renal dysfunction, and diabetes.


Subject(s)
Antihypertensive Agents/pharmacology , Aorta, Thoracic/drug effects , Arterial Pressure/drug effects , Receptors, G-Protein-Coupled/antagonists & inhibitors , Urotensins/pharmacology , Vasodilation/drug effects , Animals , Antihypertensive Agents/pharmacokinetics , Aorta, Thoracic/metabolism , CHO Cells , Cricetulus , Dose-Response Relationship, Drug , Female , Humans , Macaca fascicularis , Male , Mice, Inbred C57BL , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects
3.
J Biol Chem ; 280(25): 23876-83, 2005 Jun 24.
Article in English | MEDLINE | ID: mdl-15843379

ABSTRACT

The HNK-1 carbohydrate, which is recognized by anti-HNK-1 antibody, is well known to be expressed predominantly in the nervous system. The characteristic structural feature of the HNK-1 carbohydrate is 3-sulfo-glucuronyl residues attached to lactosamine structures (Gal beta1-4GlcNAc) on glycoproteins and glycolipids. The biosynthesis of the HNK-1 carbohydrate is regulated mainly by two glucuronyltransferases (GlcAT-P and GlcAT-S) and a sulfotransferase. In this study, we found that GlcAT-S mRNA was expressed at higher levels in the kidney than in the brain, but that both GlcAT-P and HNK-1 sulfotransferase mRNAs, which were expressed at high levels in the brain, were not detected in the kidney. These results suggested that the HNK-1 carbohydrate without sulfate (non-sulfated HNK-1 carbohydrate) is expressed in the kidney. We substantiated this hypothesis using two different monoclonal antibodies: one (anti-HNK-1 antibody) requires sulfate on glucuronyl residues for its binding, and the other (antibody M6749) does not. Western blot analyses of mouse kidney revealed that two major bands (80 and 140 kDa) were detected with antibody M6749, but not with anti-HNK-1 antibody. The 80- and 140-kDa band materials were identified as meprin alpha and CD13/aminopeptidase N, respectively. We also confirmed the presence of the non-sulfated HNK-1 carbohydrate on N-linked oligosaccharides by multistage tandem mass spectrometry. Immunofluorescence staining with antibody M6749 revealed that the non-sulfated HNK-1 carbohydrate was expressed predominantly on the apical membranes of the proximal tubules in the cortex and was also detected in the thin ascending limb in the inner medulla. This is the first study indicating the presence of the non-sulfated HNK-1 carbohydrate being synthesized by GlcAT-S in the kidney. The results presented here constitute novel knowledge concerning the function of the HNK-1 carbohydrate.


Subject(s)
CD57 Antigens/metabolism , Kidney/metabolism , Animals , Base Sequence , Blotting, Northern , Blotting, Western , CD57 Antigens/chemistry , CD57 Antigens/genetics , DNA Primers , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Mice , RNA, Messenger/genetics
4.
J Biol Chem ; 279(21): 22693-703, 2004 May 21.
Article in English | MEDLINE | ID: mdl-14993226

ABSTRACT

The HNK-1 carbohydrate epitope is found on many neural cell adhesion molecules. Its structure is characterized by a terminal sulfated glucuronyl acid. The glucuronyltransferases, GlcAT-P and GlcAT-S, are involved in the biosynthesis of the HNK-1 epitope, GlcAT-P as the major enzyme. We overexpressed and purified the recombinant human GlcAT-P from Escherichia coli. Analysis of its enzymatic activity showed that it catalyzed the transfer reaction for N-acetyllactosamine (Galbeta1-4GlcNAc) but not lacto-N-biose (Galbeta1-3GlcNAc) as an acceptor substrate. Subsequently, we determined the first x-ray crystal structures of human GlcAT-P, in the absence and presence of a donor substrate product UDP, catalytic Mn(2+), and an acceptor substrate analogue N-acetyllactosamine (Galbeta1-4GlcNAc) or an asparagine-linked biantennary nonasaccharide. The asymmetric unit contains two independent molecules. Each molecule is an alpha/beta protein with two regions that constitute the donor and acceptor substrate binding sites. The UDP moiety of donor nucleotide sugar is recognized by conserved amino acid residues including a DXD motif (Asp(195)-Asp(196)-Asp(197)). Other conserved amino acid residues interact with the terminal galactose moiety of the acceptor substrate. In addition, Val(320) and Asn(321), which are located on the C-terminal long loop from a neighboring molecule, and Phe(245) contribute to the interaction with GlcNAc moiety. These three residues play a key role in establishing the acceptor substrate specificity.


Subject(s)
CD57 Antigens/biosynthesis , Glucuronosyltransferase/chemistry , Amino Acid Motifs , Amino Acid Sequence , Amino Sugars/metabolism , Binding Sites , CD57 Antigens/chemistry , Carbohydrates/chemistry , Catalysis , Cell Adhesion , Crystallography, X-Ray , Dimerization , Electrons , Epitopes , Escherichia coli/metabolism , Glucuronosyltransferase/biosynthesis , Humans , Manganese/metabolism , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary , Substrate Specificity , Uridine Diphosphate/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...