Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
DNA Repair (Amst) ; 133: 103595, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37988925

ABSTRACT

Cells are under constant pressure to suppress DNA damage originating from both exogenous and endogenous sources. Cellular responses to DNA damage help to prevent mutagenesis and cell death that arises when DNA damage is either left unrepaired or repaired inaccurately. During the "acute phase" of DNA damage signaling, lesions are recognized, processed, and repaired to restore the primary DNA sequence whilst cell cycle checkpoints delay mitotic progression, cell death and the propagation of errors to daughter cells. Increasingly, there is recognition of a "chronic phase" of DNA damage signaling, exemplified by the secretion of dozens of cytokines days after the inciting damage event. In this review, we focus on the cellular origin of these chronic responses, the molecular pathways that control them and the increasing appreciation for the interconnection between acute and chronic DNA damage responses.


Subject(s)
DNA Damage , Signal Transduction , Signal Transduction/genetics , Cell Cycle Checkpoints , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism
2.
Nat Commun ; 14(1): 556, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36732527

ABSTRACT

Micronuclei (MN) are cytosolic bodies that sequester acentric fragments or mis-segregated chromosomes from the primary nucleus. Spontaneous rupture of the MN envelope allows recognition by the viral receptor cyclic GMP-AMP synthase (cGAS), initiating interferon signaling downstream of DNA damage. Here, we demonstrate that MN rupture is permissive but not sufficient for cGAS localization. Chromatin characteristics such as histone 3, lysine 79 dimethylation (H3K79me2) are present in the nucleus before DNA damage, retained in ruptured MN, and regulate cGAS recruitment. cGAS is further responsive to dynamic intra-MN processes occurring prior to rupture, including transcription. MN chromatin tethering via the nucleosome acidic patch is necessary for cGAS-dependent interferon signaling. Our data suggest that both damage-antecedent nuclear chromatin status and MN-contained chromatin organizational changes dictate cGAS recruitment and the magnitude of the cGAS-driven interferon cascade. Our work defines MN as integrative signaling hubs for the cellular response to genotoxic stress.


Subject(s)
Cell Nucleus , Chromatin , Nucleotidyltransferases/genetics , Cytosol , Interferons/genetics , Immunity, Innate
SELECTION OF CITATIONS
SEARCH DETAIL
...