Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 12: 708712, 2021.
Article in English | MEDLINE | ID: mdl-34489898

ABSTRACT

An increase in antibiotic resistance has led to escalating the need for the development of alternate therapy. Antimicrobial peptides (AMPs) are at the forefront of replacing conventional antibiotics, showing slower development of drug resistance, antibiofilm activity, and the ability to modulate the host immune response. The ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens that jeopardize most conventional antibiotics are known to be involved in severe respiratory tract, bloodstream, urinary tract, soft tissue, and skin infections. Among them, S. aureus is an insidious microbe and developed resistance against conventional antibiotics. In the present study, an AMP (named as peptide-Ba49) isolated from Bacillus subtilis subsp. spizizenii strain from Allium cepa (the common onion) exhibited strong antibacterial efficacy against S. aureus ATCC 25923. The mode of action of this peptide-Ba49 on S. aureus was deciphered through various sensitive probes, i.e., DiSC3 (5) and H2DCFDA, suggesting the peptide-Ba49 to be acting upon through change in membrane potential and by triggering the production of reactive oxygen species (ROS). This induced disruption of the cell membrane was further supported by morphological studies using scanning electron microscopy (SEM). Investigations on a possible post-antibiotic effect (PAE) of peptide-Ba49 showed prolonged PAE against S. aureus. Furthermore, the peptide-Ba49 prevented the formation of S. aureus biofilm at low concentration and showed its potential to degrade the mature biofilm of S. aureus. The peptide-Ba49 also exhibited intracellular killing potential against S. aureus ATCC 25923 in the macrophage cells, and moreover, peptide-Ba49 was found to bolster the fibroblast cell migration in the scratch assay at low concentration, exhibiting a wound healing efficacy of this peptide. These studies demonstrated that peptide-Ba49 isolated from the strain B. subtilis subsp. spizizenii could be a therapeutic candidate to combat the pathogenic S. aureus infections.

2.
World J Microbiol Biotechnol ; 37(2): 20, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33427970

ABSTRACT

Extensive usage of antibiotics has led to the emergence of drug-resistant strains of pathogens and hence, there is an urgent need for alternative antimicrobial agents. Antimicrobial Peptides (AMPs) of bacterial origin have shown the potential to replace some conventional antibiotics. In the present study, an AMP was isolated from Bacillus subtilis subsp. spizizenii strain Ba49 present on the Allium cepa, the common onion and named as peptide-Ba49. The isolated AMP was purified and characterized. The purified peptide-Ba49, having a molecular weight of ~ 3.3 kDa as determined using mass spectroscopy, was stable up to 121 °C and in the pH range of 5-10. Its interaction with protein degrading enzymes confirmed the peptide nature of the molecule. The peptide exhibited low minimum inhibitory concentration (MIC) against Staphylococcus aureus and its (Methicillin-resistant Staphylococcus aureus) MRSA strains (MIC, 2-16 µM/mL). Further, time kill kinetic assay was performed and analysis of the results of membrane depolarization and permeabilization assays (TEM, DiBAC4 (3) and PI) suggested peptide-Ba49 to be acting through the change in membrane potential leading to disruption of S. aureus membrane. Additionally, cytotoxicity studies of peptide-Ba49, carried out using three mammalian cell lines viz. HEK 293T, RAW 264.7, and L929, showed limited cytotoxicity on these cell lines at a concentration much higher than its MIC values. All these studies suggested that the AMP isolated from strain Ba49 (peptide-Ba49) has the potential to be an alternative to antibiotics in terms of eradicating the pathogenic as well as drug-resistant microorganisms.


Subject(s)
Bacteriocins/isolation & purification , Onions/chemistry , Plant Extracts/pharmacology , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Bacillus , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Kinetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Microbial Sensitivity Tests , Multigene Family , RAW 264.7 Cells , Staphylococcal Infections , Temperature , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...