Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 13549, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193955

ABSTRACT

Dysregulation of the immune system can initiate chronic inflammatory responses that exacerbate disease pathology. Multipotent adult progenitor cells (MAPC cells), an adult adherent bone-marrow derived stromal cell, have been observed to promote the resolution of uncontrolled inflammatory responses in a variety of clinical conditions including acute ischemic stroke, acute myocardial infarction (AMI), graft vs host disease (GvHD), and acute respiratory distress syndrome (ARDS). One of the proposed mechanisms by which MAPC cells modulate immune responses is via the induction of regulatory T cells (Tregs), however, the mechanism(s) involved remains to be fully elucidated. Herein, we demonstrate that, in an in vitro setting, MAPC cells increase Treg frequencies by promoting Treg proliferation and CD4+ T cell differentiation into Tregs. Moreover, MAPC cell-induced Tregs (miTregs) have a more suppressive phenotype characterized by increased expression of CTLA-4, HLA-DR, and PD-L1 and T cell suppression capacity. MAPC cells also promoted Treg activation by inducing CD45RA+ CD45RO+ transitional Tregs. Additionally, we identify transforming growth factor beta (TGFß) as an essential factor for Treg induction secreted by MAPC cells. Furthermore, inhibition of indoleamine 2, 3-dioxygenase (IDO) resulted in decreased Treg induction by MAPC cells demonstrating IDO involvement. Our studies also show that CD14+ monocytes play a critical role in Treg induction by MAPC cells. Our study describes MAPC cell dependent Treg phenotypic changes and provides evidence of potential mechanisms by which MAPC cells promote Treg differentiation.


Subject(s)
Adult Stem Cells/immunology , Immune Tolerance , Monocytes/immunology , Multipotent Stem Cells/immunology , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta/immunology , Humans
2.
Transplant Res ; 3(1): 19, 2014.
Article in English | MEDLINE | ID: mdl-25671090

ABSTRACT

BACKGROUND: Primary graft dysfunction (PGD) is a significant cause of early morbidity and mortality following lung transplantation. Improved organ preservation techniques will decrease ischemia-reperfusion injury (IRI) contributing to PGD. Adult bone marrow-derived adherent stem cells, including mesenchymal stromal (stem) cells (MSCs) and multipotent adult progenitor cells (MAPCs), have potent anti-inflammatory actions, and we thus postulated that intratracheal MAPC administration during donor lung processing would decrease IRI. The goal of the study was therefore to determine if intratracheal MAPC instillation would decrease lung injury and inflammation in an ex vivo human lung explant model of prolonged cold storage and subsequent reperfusion. METHODS: Four donor lungs not utilized for transplant underwent 8 h of cold storage (4°C). Following rewarming for approximately 30 min, non-HLA-matched allogeneic MAPCs (1 × 10(7) MAPCs/lung) were bronchoscopically instilled into the left lower lobe (LLL) and vehicle comparably instilled into the right lower lobe (RLL). The lungs were then perfused and mechanically ventilated for 4 h and subsequently assessed for histologic injury and for inflammatory markers in bronchoalveolar lavage fluid (BALF) and lung tissue. RESULTS: All LLLs consistently demonstrated a significant decrease in histologic and BALF inflammation compared to vehicle-treated RLLs. CONCLUSIONS: These initial pilot studies suggest that use of non-HLA-matched allogeneic MAPCs during donor lung processing can decrease markers of cold ischemia-induced lung injury.

SELECTION OF CITATIONS
SEARCH DETAIL
...