Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neurol Belg ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965176

ABSTRACT

INTRODUCTION: Riboflavin Transporter Deficiency (RTD) is a rare neurological disorder characterized by pontobulbar palsy, hearing loss, and motor cranial nerve involvement. SLC52A3 and SLC52A2 mutations are causes of RTD. SLC52A2 mutations are usually found in childhood onset cases. Fifteen Iranian RTD diagnosed patients without SLC52A2 mutations have been previously described. We aimed to identify causative mutations in two childhood cases. METHODS: We recruited patients with diagnosis of BVVL. Comprehensive clinical evaluations were performed on the patients. SLC52A3 and SLC52A2 genes were PCR-amplified and Sanger sequenced. Candidate disease causing variations were screened for segregation with disease status in the respective families and control individuals. RESULTS: A novel homozygous SLC52A3 mutation (p.Met1Val) and a heterozygous SLC52A2 mutation (p.Ala288Val) were both observed in one proband with typical RTD presentations. The aggregate of presentations in the early stages of disease in the second patient that included weakness in the lower extremities, absence of bulbar or hearing defects, prominent sensory polyneuropathy as evidenced in electrodiagnostic studies, and absence of sensory symptoms including sensory ataxia did not prompt immediate RTD diagnosis. Dysarthria and decreased hearing manifested later in the disease course. A novel homozygous SLC52A2 (p.Val314Met) mutation was identified. CONCLUSION: A literature search found recent reports of other atypical RTD presentations. These include MRI findings, speech understanding difficulties accompanied by normal hearing, anemia, and left ventricular non-compaction. Knowledge of unusual presentations lessens the chance of misdiagnosis or delayed RTD diagnosis which, in light of favorable effects of riboflavin supplementation, is of immense importance.

2.
Crit Rev Food Sci Nutr ; 63(22): 5488-5505, 2023.
Article in English | MEDLINE | ID: mdl-34978223

ABSTRACT

Although conventional drugs are widely used in the prevention and treatment of cardiovascular disease (CVD), they are being used less frequently due to concerns about possible side effects over the long term. There has been a renewed research interest in medicinal plant products, and their role in protecting the cardiovascular system and treating CVD, which are now being considered as potential alternatives to modern drugs. The most important mechanism causing damage to the myocardium after heart attack and reperfusion, is increased levels of free radicals and oxidative stress. Therefore, treatment approaches often focus on reducing free radicals or enhancing antioxidant defense mechanism. It has been previously reported that bioactive natural products can protect the heart muscle in myocardial infarction (MI). Since these compounds are readily available in fruits and vegetables, they could prevent the risk of MI if they are consumed daily. Although the benefits of a healthy diet are well known, many scientific studies have focused on whether pure natural compounds can prevent and treat MI. In this review we summarize the effects of curcumin, resveratrol, quercitin, berberine, and tanshinone on MI and CVD, and focus on their proposed molecular mechanisms of action.


Subject(s)
Biological Products , Myocardial Infarction , Humans , Biological Products/pharmacology , Biological Products/therapeutic use , Myocardial Infarction/drug therapy , Antioxidants/pharmacology , Antioxidants/therapeutic use , Resveratrol/pharmacology , Resveratrol/therapeutic use , Free Radicals/therapeutic use
3.
Epigenomics ; 14(9): 549-563, 2022 05.
Article in English | MEDLINE | ID: mdl-35473299

ABSTRACT

Glioma is the most prevalent invasive primary tumor of the central nervous system. Glioma cells can spread and infiltrate into normal surrounding brain tissues. Despite the standard use of chemotherapy and radiotherapy after surgery in glioma patients, treatment resistance is still a problem, as the underlying mechanisms are still not fully understood. Non-coding RNAs are widely involved in tumor progression and treatment resistance mechanisms. In the present review, we discuss the pathways by which microRNAs and long non-coding RNAs can affect resistance to chemotherapy and radiotherapy, as well as offer potential therapeutic options for future glioma treatment.


Subject(s)
Glioma , MicroRNAs , RNA, Long Noncoding , Gene Expression Regulation, Neoplastic , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...