Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37176888

ABSTRACT

Anthocyanins are a major group of plant pigments that have antioxidant activities. Pigments play a major role in human health and have attracted a lot of attention globally. Many factors affect anthocyanin yields, such as solvent type, incubation time, solvent-to-sample ratio, sample type, and temperature. The first parameter was tested, and the rest were considered constant in this experiment. A total of nine organic and water-based solvents (methanol and chloroform: methanol, acetone, ethanol, water) and their combinations were compared to extract anthocyanins from freshly-pureed strawberries. Solvents changed anthocyanin yield, color parameters, and profile. The color parameters of a* values lower than 30, L* values higher than 85, hue angle more than 40, and chroma less than 30 indicated some color degradation in strawberry anthocyanins. Therefore, the best solvents for anthocyanin assessment were methanol and methanol: water. The second-best solvent was the pH differential buffers. Other solvents such as ethanol, chloroform: methanol, water, and water-based solvents extracted considerable amounts of anthocyanins; however, they showed some degree of color degradation, evidenced by the color parameters. Acetone did not yield a stable extract which degraded over 48 h of storage at 4 °C. The extraction solvent determined the main anthocyanin of the anthocyanins profile. Pelargonidin was the major anthocyanin in chloroform: methanol solvent, while delphinidin was dominant in all other solvents.

2.
Food Sci Nutr ; 10(7): 2123-2131, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35844903

ABSTRACT

Anthocyanins are a group of water-soluble polyphenolic pigments found primarily in flowers, vegetables, and fruits. These pigments play critical roles in plant and human health. Spectrophotometric methods are a simple and inexpensive way to quantify anthocyanins in plant tissues. Two main spectrophotometric methods have been developed, organic solvent-based, and pH differential methods. Both of these methods are subject to interference from light-absorbing impurities and need to be optimized for different matrixes of different plant materials. Eight methods have been tested in this experiment to quantify anthocyanins in strawberry fruits. Six organic solvent-based methods tested methanol, chloroform-methanol, and MgO in different ratios. The other two methods were pH differential method and a combination of organic solvent-based and pH differential method. Two methods used organic solvents (methanol and chloroform-methanol) were the best in extracting anthocyanin from strawberry fruits. Adding MgO increased the pH of the extract and was less efficient in anthocyanin extraction. All other methods had lower anthocyanin yield compared with methanol and chloroform-methanol methods and are not recommended for strawberry fruit anthocyanin extraction.

3.
Foods ; 11(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35454660

ABSTRACT

Anthocyanins are the primarily pigments in many flowers, vegetables, and fruits and play a critical role in human and plant health. They are polyphenolic pigments that are soluble in water and usually quantified by spectrophotometric methods. The two main methods that quantify anthocyanins are pH differential and organic solvent-based methods. Our hypothesis was that these methods extract different anthocyanin profiles. Therefore, this experiment was designed to identify anthocyanin profiles that are extracted by pH differential and organic solvent-based methods and observe their total anthocyanin content from strawberries. Six methods were tested in this experiment to quantify and profile anthocyanins in strawberry fruits by spectrophotometry and Ultra High Performance Liquid Chromatography (UHPLC) respectively. Four methods used organic solvents (methanol, and chloroform-methanol) in different combinations. The next two methods were pH differential and a combination of organic solvent and the pH differential method. The results suggest that acidified chloroform-methanol extracted the highest anthocyanin content compared to water-based solvents. Methanol-water based solvents also performed better than methanol alone, because both methanol and water may extract different profiles of anthocyanins. Water-based extracts had the greatest absorbance at a lower wavelength (498 nm), followed by methanol (508 nm), and chloroform (530 nm). Chloroform-methanol solvent with higher pH (3.0) extracted pelargonidin as the main anthocyanin, while methanol and water-based solvents (with lower pH 1.0-2.0) extracted delphinidin as their main anthocyanin as identified by UHPLC. Therefore, chloroform-methanol and methanol-water solvents were the best solvents for extracting anthocyanins from strawberries. Also, freeze-dried strawberries had higher anthocyanin contents compared to fresh or frozen samples.

4.
Microorganisms ; 6(4)2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30301143

ABSTRACT

Small fruits are a multi-billion dollar industry in the US, and are economically important in many other countries. However, they are perishable and susceptible to physiological disorders and biological damage. Food safety and fruit quality are the major concerns of the food chain from farm to consumer, especially with increasing regulations in recent years. At present, the industry depends on pesticides and fungicides to control food spoilage organisms. However, due to consumer concerns and increasing demand for safer produce, efforts are being made to identify eco-friendly compounds that can extend the shelf life of small fruits. Most volatiles and essential oils produced by plants are safe for humans and the environment, and lots of research has been conducted to test the in vitro efficacy of single-compound volatiles or multi-compound essential oils on various microorganisms. However, there are not many reports on their in vivo (in storage) and In situ (in the field) applications. In this review, we discuss the efficacy, minimum inhibitory concentrations, and mechanisms of action of volatiles and essential oils that control microorganisms (bacteria and fungi) on small fruits such as strawberries, raspberries, blueberries, blackberries, and grapes under the three conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...