Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ISA Trans ; 146: 75-86, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38160078

ABSTRACT

Path-tracking and lane-keeping tasks are critical to guarantee safety and navigation performance considerations for deploying autonomous cars. This paper presents a novel control framework for the path-tracking control of high-speed autonomous cars with structured uncertainties. This study introduces a nonlinear adaptive control system based on a fractional-order terminal sliding mode system while incorporating a novel Gaussian Nonsingleton type-3 fuzzy system (FOTSM-NT3FS). Therefore, the proposed controller is independent of the information about the ego vehicle's dynamic information, and instead, the dynamics are approximated through a developed NT3FLS. The developed control system exhibits robustness to measurement errors and faulty sensors, because the inputs to the NT3FS are uncertain. In order to guarantee the boundedness of the adaptation parameters, the σ-mod approach is employed. The Lyapunov stability theorem and Barbalat's lemma are used to ensure the uniform ultimate boundedness of the closed loop system and the convergence of tracking errors to the origin in finite time. High-fidelity co-simulations with CarSim and MATLAB are performed to verify the effectiveness of the proposed control scheme and are also compared to other reported methods in the literature. Based on the obtained results, the schemed controller exhibits competitive effectiveness in path-tracking tasks and strong efficiency under various road conditions, parametric uncertainties, and unknown disturbances.

2.
ISA Trans ; 114: 171-190, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33422331

ABSTRACT

This paper proposes an adaptive and robust adaptive control strategy based on type-2 fuzzy neural network (T2FNN) for tracking the desired trajectories of a quadrotor. The designed methods can control both the position and the orientation of a quadrotor. Contrary to common sliding mode controllers (SMCs), the robust adaptive trajectory tracking scheme presented here is based on SMC with exponential reaching law; which helps reduce the phenomenon of chattering. Moreover, parameters including the gains of sliding surfaces, are optimized by cuckoo optimization algorithm (COA), and the results are compared with those obtained by genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO). The designed methods in this study are called adaptive T2FNN controller and the exponential SMC (ESMC)-T2FNN. The law for updating the T2FNN is obtained online by using the Lyapunov stability theory. Considering undesired factors such as uncertainties, external disturbances and control signal saturation, the results of our controllers are compared with those of the adaptive type-1 fuzzy neural network controller (T1FNN) and ESMC-T1FNN. The extensive simulations demonstrate the effectiveness of the proposed COA-based ESMC-AT2FNN approach compared to the other tested techniques (i.e. GA, PSO and ACO) in terms of the improved transient and steady-state trajectory-tracking performance. The mean and standard deviation values concerning the COA are obtained through statistical analyses at 0.00006173 and 0.000092, respectively. This paper also examines the complexity of COA in optimizing the trajectory tracking control of quadrotor and investigates the effects of COA parameters on optimization results. The stable performance of the cuckoo algorithm is demonstrated by varying its parameters and analyzing the obtained results. These results also show the convergence of COA for the considered problem.

SELECTION OF CITATIONS
SEARCH DETAIL
...