Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Biol (Camb) ; 162024 Jan 23.
Article in English | MEDLINE | ID: mdl-38366952

ABSTRACT

Diabetes is a rising global metabolic disorder and leads to long-term consequences. As a multifactorial disease, the gene-associated mechanisms are important to know. This study applied a bioinformatics approach to explore the molecular underpinning of type 2 diabetes mellitus through differential gene expression analysis. We used microarray datasets GSE16415 and GSE29226 to identify differentially expressed genes between type 2 diabetes and normal samples using R software. Following that, using the STRING database, the protein-protein interaction network was constructed and further analyzed by Cytoscape software. The EnrichR database was used for Gene Ontology and pathway enrichment analysis to explore key pathways and functional annotations of hub genes. We also used miRTarBase and TargetScan databases to predict miRNAs targeting hub genes. We identified 21 hub genes in type 2 diabetes, some showing more significant changes in the PPI network. Our results revealed that GLUL, SLC32A1, PC, MAPK10, MAPT, and POSTN genes are more important in the PPI network and can be experimentally investigated as therapeutic targets. Hsa-miR-492 and hsa-miR-16-5p are suggested for diagnosis and prognosis by targeting GLUL, SLC32A1, PC, MAPK10, and MAPT genes involved in the insulin signaling pathway. Insight: Type 2 diabetes, as a rising global and multifactorial disorder, is important to know the gene-associated mechanisms. In an integrative bioinformatics analysis, we integrated different finding datasets to put together and find valuable diagnostic and prognostic hub genes and miRNAs. In contrast, genes, RNAs, and enzymes interact systematically in pathways. Using multiple databases and software, we identified differential expression between hub genes of diabetes and normal samples. We explored different protein-protein interaction networks, gene ontology, key pathway analysis, and predicted miRNAs that target hub genes. This study reported 21 significant hub genes and some miRNAs in the insulin signaling pathway for innovative and potential diagnostic and therapeutic purposes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulins , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Diabetes Mellitus, Type 2/genetics , Gene Expression Profiling/methods , Gene Regulatory Networks , Insulins/genetics , Computational Biology/methods
2.
Comput Intell Neurosci ; 2022: 9554768, 2022.
Article in English | MEDLINE | ID: mdl-35602645

ABSTRACT

Alzheimer's disease (AD) is a type of dementia that affects the elderly population. A machine learning (ML) system has been trained to recognize particular patterns to diagnose AD using an algorithm in an ML system. As a result, developing a feature extraction approach is critical for reducing calculation time. The input image in this article is a Two-Dimensional Discrete Wavelet (2D-DWT). The Time-Dependent Power Spectrum Descriptors (TD-PSD) model is used to represent the subbanded wavelet coefficients. The principal property vector is made up of the characteristics of the TD-PSD model. Based on classification algorithms, the collected characteristics are applied independently to present AD classifications. The categorization is used to determine the kind of tumor. The TD-PSD method was used to extract wavelet subbands features from three sets of test samples: moderate cognitive impairment (MCI), AD, and healthy controls (HC). The outcomes of three modes of classic classification methods, including KNN, SVM, Decision Tree, and LDA approaches, are documented, as well as the final feature employed in each. Finally, we show the CNN architecture for AD patient classification. Output assessment is used to show the results. Other techniques are outperformed by the given CNN and DT.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Algorithms , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Brain/pathology , Cognitive Dysfunction/diagnosis , Humans , Magnetic Resonance Imaging , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...