Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Inflamm (Lond) ; 21(1): 26, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982470

ABSTRACT

BACKGROUND: Atherosclerosis is a chronic inflammatory condition affecting the large arteries and is a major cause of cardiovascular diseases (CVDs) globally. Increased levels of adhesion molecules in cardiac tissue serve as prognostic markers for coronary artery occlusion risk. Given the antioxidant properties of bilirubin and its inverse correlation with atherosclerosis, this study aimed to assess the beneficial effects of bilirubin on atherosclerotic indices and heart structure in high-fat diet-fed diabetic rats with atherosclerosis. METHODS: Atherosclerosis was induced in three out of five groups of adult male Sprague Dawley rats through a 14-week period of high-fat diet (HFD) consumption and a single low dose of streptozotocin (STZ) (35 mg/kg). The atherosclerotic rats were then treated with intraperitoneal administration of 10 mg/kg/day bilirubin for either 6 or 14 weeks (treated and protected groups, respectively), or the vehicle. Two additional groups served as the control and bilirubin-treated rats. Subsequently, the mRNA expression levels of vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), lectin-like LDL receptor 1 (LOX-1), and the inducible nitric oxide synthase (iNOS) were analyzed using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Histopathological and stereological analyses were performed to assess changes in the heart structure. RESULTS: Bilirubin significantly decreased the expression of VCAM-1, ICAM-1, LOX-1, and iNOS genes in the treated group. Moreover, bilirubin mitigated pathological damage in the left ventricle of the heart. Stereological analysis revealed a decrease in the left ventricle and myocardium volume, accompanied by an increase in vessel volume in rats treated with bilirubin. CONCLUSION: These findings demonstrate that mild hyperbilirubinemia can protect against the progression of atherosclerosis and heart failure by improving lipid profile, modulating adhesion molecules, LOX-1, and iNOS gene expression levels.

2.
Metabolism ; 154: 155811, 2024 May.
Article in English | MEDLINE | ID: mdl-38309690

ABSTRACT

The incidence of nonalcoholic fatty liver disease (NAFLD) is on the rise, mirroring a global surge in diabetes and metabolic syndrome, as its major leading causes. NAFLD represents a spectrum of liver disorders, ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), which can potentially progress to cirrhosis and hepatocellular carcinoma (HCC). Mechanistically, we know the unfolded protein response (UPR) as a protective cellular mechanism, being triggered under circumstances of endoplasmic reticulum (ER) stress. The hepatic UPR is turned on in a broad spectrum of liver diseases, including NAFLD. Recent data also defines molecular mechanisms that may underlie the existing correlation between UPR activation and NAFLD. More interestingly, subsequent studies have demonstrated an additional mechanism, i.e. autophagy, to be involved in hepatic steatosis, and thus NAFLD pathogenesis, principally by regulating the insulin sensitivity, hepatocellular injury, innate immunity, fibrosis, and carcinogenesis. All these findings suggest possible mechanistic roles for autophagy in the progression of NAFLD and its complications. Both UPR and autophagy are dynamic and interconnected fluxes that act as protective responses to minimize the harmful effects of hepatic lipid accumulation, as well as the ER stress during NAFLD. The functions of UPR and autophagy in the liver, together with findings of decreased hepatic autophagy in correlation with conditions that predispose to NAFLD, such as obesity and aging, suggest that autophagy and UPR, alone or combined, may be novel therapeutic targets against the disease. In this review, we discuss the current evidence on the interplay between autophagy and the UPR in connection to the NAFLD pathogenesis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Unfolded Protein Response , Liver/metabolism , Autophagy/physiology
3.
Chem Biol Interact ; 378: 110490, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37054934

ABSTRACT

Diabetic kidney disease (DKD), as a chronic diabetes-induced complication, is considered the most frequent leading cause of end-stage renal disease (ESRD). Regarding the observed protective effects of bilirubin, as a potential endogenous antioxidant/anti-inflammatory compound, against DKD progression, we planned to evaluate the effects of bilirubin administration on endoplasmic reticulum (ER) stress and inflammation in type 2 diabetic (T2D) rats fed high-fat diet (HFD). In this regard, thirty 8-week adult male Sprague Dawley rats were divided into five groups (n = 6). T2D and obesity were induced by streptozotocin (STZ) (35 mg/kg) and HFD (700 kcal/day), respectively. Bilirubin treatment was carried out for 6- and 14-week intervals (10 mg/kg/day), intraperitoneally. Then, the expression levels of ER stress-related genes (i.e. binding immunoglobulin protein (Bip), C/EBP homologous protein (Chop), and spliced x-box-binding protein 1 (sXbp1), as well as nuclear factor-κB (NF-κB) were analyzed using quantitative Real-time PCR experiments. Moreover, histopathological and stereological changes of kidney and its related structures were investigated for the studied rats. Bip, Chop, and NF-κB expression levels were significantly decreased under bilirubin treatment, while sXbp1 was up-regulated following the bilirubin administration. More interestingly, glomerular constructive damages seen in HFD-T2D rats, were considerably improved in the animals received bilirubin. Stereological assessments also revealed that bilirubin could desirably reverse the mitigation of kidney's total volume and its related structures, such as cortex, glomeruli, and convoluted tubules. Taken together, bilirubin has potential protective/ameliorative effects on DKD progression, especially through alleviating the renal ER stress and inflammatory responses in T2D rats with injured kidneys. In this era, clinical benefits of mild hyperbilirubinemia can be considered in human DKD.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Humans , Rats , Male , Animals , Rats, Sprague-Dawley , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , NF-kappa B/metabolism , Bilirubin/metabolism , Diet, High-Fat/adverse effects , Kidney , Inflammation/metabolism , Diabetic Nephropathies/pathology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Endoplasmic Reticulum Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...