Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Epidemiol Infect ; 143(10): 2241-4, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26050717

ABSTRACT

Dobrava-Belgrade virus (DOBV) is the most pathogenic hantavirus in Europe with a case-fatality rate of up to 12%. To detect changes in risk for humans, the prevalence of antibodies to DOBV has been monitored in a population of Apodemus flavicollis in the province of Trento (northern Italy) since 2000, and a sudden increase was observed in 2010. In the 13-year period of this study, 2077 animals were live-trapped and mean hantavirus seroprevalence was 2·7% (s.e. = 0·3%), ranging from 0% (in 2000, 2002 and 2003) to 12·5% (in 2012). Climatic (temperature and precipitation) and host (rodent population density, rodent weight and sex, and larval tick burden) variables were analysed using Generalized Linear Models and multi-model inference to select the best model. Climatic changes (mean annual precipitation and maximum temperature) and individual body mass had a positive effect on hantavirus seroprevalence. Other possible drivers affecting the observed pattern need to be studied further.


Subject(s)
Antibodies, Viral/blood , Hantavirus Infections/veterinary , Murinae , Orthohantavirus/immunology , Rodent Diseases/epidemiology , Rodent Diseases/virology , Animals , Body Weight , Climate , Female , Hantavirus Infections/epidemiology , Italy/epidemiology , Male , Seroepidemiologic Studies
2.
Int J Parasitol ; 42(4): 365-72, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22464896

ABSTRACT

Tick borne encephalitis (TBE) is endemic to eastern and central Europe with broad temporal and spatial variation in infection risk. Although many studies have focused on understanding the environmental and socio-economic factors affecting exposure of humans to TBE, comparatively little research has been devoted to assessing the underlying ecological mechanisms of TBE occurrence in enzootic cycles, and therefore TBE hazard. The aim of this study was to evaluate the effect of the main ungulate tick hosts on the pattern of tick infestation in rodents and TBE occurrence in rodents and questing adult ticks. In this empirical study, we considered three areas where endemic human TBE occurs and three control sites having no reported human TBE cases. In these six sites located in Italy and Slovakia, we assessed deer density using the pellet group count-plot sampling technique, collected questing ticks, live-trapped rodents (primarily Apodemus flavicollis and Myodes glareolus) and counted ticks feeding on rodents. Both rodents and questing ticks were screened for TBE infection. TBE infection in ticks and rodents was positively associated with the number of co-feeding ticks on rodents and negatively correlated with deer density. We hypothesise that the negative relationship between deer density and TBE occurrence on a local scale (defined by the minimum overlapping area of host species) could be attributed to deer (incompetent hosts) diverting questing ticks from rodents (competent hosts), know as the 'dilution effect hypothesis'. We observed that, after an initial increase, the number of ticks feeding on rodents reached a peak for an intermediate value of estimated deer density and then decreased. Therefore, while at a regional scale, tick host availability has already been shown to be directly correlated with TBE distribution, our results suggest that the interactions between deer, rodents and ticks are much more complex on a local scale, supporting the possibility of a dilution effect for TBE.


Subject(s)
Deer/parasitology , Encephalitis Viruses, Tick-Borne/isolation & purification , Ixodes/growth & development , Rodent Diseases/epidemiology , Tick Infestations/veterinary , Animals , Ecosystem , Italy , Ixodes/virology , Population Density , Rodent Diseases/parasitology , Rodentia , Slovakia , Tick Infestations/epidemiology , Tick Infestations/parasitology
3.
Vet Parasitol ; 183(1-2): 114-24, 2011 Dec 29.
Article in English | MEDLINE | ID: mdl-21820245

ABSTRACT

The wood tick Ixodes ricinus, one of the most common arthropod-borne disease vectors, is of increasing relevance for human and animal health in Europe. The aim of this study was to determine the relative contribution of several abiotic and biotic factors potentially affecting questing activity and local abundance of I. ricinus in Italy, considering the scale at which these factors interact with the host-seeking ticks. Within EDEN, a large-scale EU collaborative project on eco-epidemiology of vector-borne diseases, we collected questing ticks for three consecutive years using a standard protocol at eleven sites in the Italian Alps and Apennines. A total of 25 447 I. ricinus were collected. All sites showed the same annual pattern of tick activity (bimodal for nymphs and unimodal for larvae and adults), although the abundance of nymphs was statistically different between sites and years. A Generalized Linear Mixed Model and a Linear Mixed Model fitted to data for nymphs, showed that while the principal variables affecting the local abundance of questing ticks were saturation deficit (an index combining temperature and relative humidity) and red deer density, the most important variable affecting questing nymph activity was saturation deficit. As for the timing of seasonal emergence, we confirmed that the threshold temperature at this latitude for larvae is 10°C (mean maximum) while that for nymphs is 8°C.


Subject(s)
Deer/parasitology , Ixodes/physiology , Tick Infestations/veterinary , Animals , Behavior, Animal , Feeding Behavior , Female , Host-Parasite Interactions , Humans , Humidity , Italy/epidemiology , Ixodes/growth & development , Larva , Linear Models , Longitudinal Studies , Male , Nymph , Population Density , Seasons , Temperature , Tick Infestations/epidemiology , Tick Infestations/parasitology
4.
Epidemiol Infect ; 134(4): 830-6, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16371172

ABSTRACT

The spatial and temporal distribution of hantavirus and arenavirus antibody-positive wild rodents in Trentino, Italy, was studied using immunofluorescence assays (IFA) in two long-term sites trapped in 2000-2003, and six other sites trapped in 2002. The overall hantavirus seroprevalence in the bank voles, Clethrionomys glareolus (n=229) screened for Puumala virus (PUUV) antibodies was 0.4%, and that for Apodemus flavicollis mice (n=1416) screened for Dobrava virus (DOBV) antibodies was 0.2%. Antibodies against lymphocytic choriomeningitis virus (LCMV) were found in 82 (5.6%) of the 1472 tested rodents; the seroprevalence being 6.1% in A. flavicollis (n=1181), 3.3% in C. glareolus (n=276), and 14.3% in Microtus arvalis (n=7). Of the serum samples of 488 forestry workers studied by IFA, 12 were LCMV-IgG positive (2.5%) and one DOBV-IgG positive (0.2%), however, the latter could not be confirmed DOBV-specific with a neutralization assay. Our results show a widespread distribution but low prevalence of DOBV in Trentino, and demonstrate that the arenavirus antibodies are a common finding in several other rodent species besides the house mouse.


Subject(s)
Antibodies, Viral/blood , Arenavirus/isolation & purification , Orthohantavirus/isolation & purification , Rodentia/virology , Adult , Animals , Chi-Square Distribution , Disease Reservoirs , Disease Vectors , Female , Humans , Italy , Male , Middle Aged , Prevalence
5.
Parassitologia ; 46(1-2): 119-22, 2004 Jun.
Article in Italian | MEDLINE | ID: mdl-15305699

ABSTRACT

The tick Ixodes ricinus has been recorded in most Italian regions especially in thermo-mesophilous woods and shrubby habitats where the relative humidity allow the tick to complete its 3 year developmental cycle, as predicted for the European climatic ranges. This tick acts both as vector and reservoir for a series of wildlife zoonotic pathogens, especially the agents of Lyme diseases, Tick borne encephalitis and Human Granulocytic Ehrlichiosis, which are emerging in most of Europe. To assess the spatial distribution of these pathogens and the infection risk for humans and animals within the territory of the Province of Trento, we carried out a long term study using a combination of eco-epidemiological surveys and mathematical modelling. An extensive tick collection with a GIS based habitat suitability analysis allowed us to identify the areas where tick occurs at various density. To identify the areas with higher infection risk, we estimated the values of R0 for Borrelia burgdorferi s.l., TBE virus and Anaplasma phagocytophila under different ecological conditions. We assessed the infection prevalence in the vector and in the wildlife reservoir species that play a central role in the persistence of these infections, ie the small mammals A. flavicollis and C. glareolus. We also considered the double effect of roe deer (Capreolus capreolus) which act as reservoir for A. phagocytophila but is an incompetent host for B. burgdorferi and TBE virus, thus reducing the infection prevalence in ticks of these last two pathogens. Infection prevalence with B. burgdorferi and A. phagocytophila in the vector was assessed by PCR screening 1212 I. ricinus nymphs collected by dragging in six main study areas during 2002. The mean infection prevalence recorded was 1.32% for B. burgdorferi s.l. and 9.84% for A. phagocytophila. Infection prevalence in nymphs with TBE virus, as assessed in a previous study was 0.03%. Infection prevalence in rodents was assessed by screening (with ELISA and PCR) tissues and blood samples collected from 367 rodent individuals trapped extensively during 2002 within 6 main study areas. A. flavicollis (N=238) was found to be infected with all three pathogens investigated, with infection prevalence ranging from 3.3% for TBE virus to 11.7% for A. phagocytophila, and 16.6% with B. burgdorferi s.l. C. glareolus (N=108) showed an infection prevalence of 6.5% with A. phagocytophila and 12.7% with B. burgdorferi s.l., while no individuals were infected with TBE virus. We also screened 98 spleen samples collected from roe deer with PCR, resulting in a mean prevalence of infection with A. phagocytophila of 19.8%. Using a deterministic model we explored the condition for diseases persistence under different rodent and roe deer densities. R0 values resulted largely above 1 for B. burgdorferi s.l. in the vast majority of the areas classified as suitable for I. ricinus occurrence in Trentino, while the condition for TBE persistence appeared to be more restricted by a combination of climatic condition and host densities.


Subject(s)
Arachnid Vectors/microbiology , Disease Reservoirs , Ehrlichiosis/transmission , Ixodes/microbiology , Lyme Disease/transmission , Tick-Borne Diseases/transmission , Anaplasma phagocytophilum/isolation & purification , Animals , Animals, Domestic/parasitology , Animals, Wild/parasitology , Arachnid Vectors/virology , Bites and Stings/complications , Bites and Stings/microbiology , Deer/microbiology , Deer/parasitology , Disease Transmission, Infectious , Ehrlichiosis/veterinary , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/transmission , Food Contamination , Humans , Italy/epidemiology , Ixodes/virology , Lyme Disease/epidemiology , Parasitic Diseases, Animal/epidemiology , Parasitic Diseases, Animal/transmission , Tick Infestations/veterinary , Tick-Borne Diseases/epidemiology , Trees , Zoonoses
SELECTION OF CITATIONS
SEARCH DETAIL
...