Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 519: 90-106, 2023 05 21.
Article in English | MEDLINE | ID: mdl-36948482

ABSTRACT

Iron supplementation previously demonstrated antidepressant-like effects in post-partum rats. The present study evaluates the possible synergistic antidepressant effect of sub-therapeutic dose of iron co-administered with citalopram or imipramine in female Institute of Cancer Research mice. Depression-like symptoms were induced in the forced swim (FST), tail suspension (TST), and open space swim (OSST) tests while open field test (OFT) was used to assess locomotor activity. Mice (n = 8) received iron (0.8-7.2 mg/kg), citalopram (3-30 mg/kg), imipramine (3-30 mg/kg), desferrioxamine (50 mg/kg) or saline in the single treatment phase of each model and subsequently a sub-therapeutic dose of iron co-administered with citalopram or imipramine. Assessment of serum brain derived neurotrophic factor (BDNF) and dendritic spine density was done using ELISA and Golgi staining techniques respectively. Iron, citalopram and imipramine, unlike desferrioxamine, reduced immobility score in the TST, FST and OSST without affecting locomotor activity, suggesting antidepressant-like effect. Sub-therapeutic dose of iron in combination with citalopram or imipramine further enhanced the antidepressant-like effect, producing a more rapid effect when compared to the iron, citalopram or imipramine alone. Iron, citalopram and imipramine or their combinations increased serum BDNF concentration, hippocampal neuronal count and dendritic spine densities. Our study provides experimental evidence that iron has antidepressant-like effect and sub-therapeutic dose of iron combined with citalopram or imipramine produces more rapid antidepressant-like effect. We further show that iron alone or its combination with citalopram or imipramine attenuates the neuronal loss associated with depressive conditions, increases dendritic spines density and BDNF levels. These finding suggest iron-induced neuronal plasticity in the mice brain.


Subject(s)
Citalopram , Imipramine , Female , Mice , Rats , Animals , Imipramine/pharmacology , Imipramine/therapeutic use , Citalopram/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Dendritic Spines/metabolism , Deferoxamine/pharmacology , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Swimming , Hippocampus/metabolism , Depression/drug therapy
2.
IBRO Neurosci Rep ; 12: 309-322, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35746974

ABSTRACT

Mood disorders can be considered among the most common and debilitating mental disorders. Major depression, as an example of mood disorders, is known to severely reduce the quality of life as well as psychosocial functioning of those affected. Its impact on the burden of disease worldwide has been enormous, with the World Health Organisation projecting depression to be the leading cause of mental illness by 2030. Despite several studies on the subject, little has been done to contextualise the condition in Africa, coupled with the fact that there is still much to be understood on the subject. This review attempts to shed more light on the prevalence of depression in Sub-Saharan Africa (SSA), its pathophysiology, risk factors, diagnosis and the experimental models available to study depression within the sub-region. It also evaluates the contribution of the sub-region to the global research output of depression as well as bottlenecks associated with full exploitation of the sub region's resources to manage the disorder.

3.
IBRO Neurosci Rep ; 12: 280-296, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35746978

ABSTRACT

Background: Postpartum depression is a mood disorder that affects about 9-20% of women after child birth. Reports suggest that gestational iron deficiency can cause a deficit in behavioral, cognitive and affective functions and can precipitate depressive symptoms in mothers during the postpartum period. The present study examined the effect of iron supplementation on depressive behavior during postpartum period in a rat model. Method: Female Sprague-Dawley rats were crossed. Pregnant rats received iron, fluoxetine, desferrioxamine or vehicle throughout the period of gestation. During the postpartum period, mothers from all groups were taken through the open field test (OFT), forced swim test (FST), novelty-induced hypophagia (NIH) and sacrificed for histological examination of the brains. Results: Results showed that rats treated with iron-chelating agent, desferrioxamine, and vehicle during gestation exhibited increased immobility scores in the FST, increased latency to feed and reduced feeding in the NIH with corresponding decreased number of neurons and dendritic branches in the cortex of the brain. These depression-related effects were attenuated by perinatal iron supplementation which showed decreased immobility scores in the FST comparable to rats treated with fluoxetine, a clinically effective antidepressant. Iron treatment also decreased latency to feeding while increasing feeding behavior in the NIH. Iron-treated dams had a higher number of neurons with dendritic connections in the frontal cortex compared to vehicle- and desferrioxamine-treated groups. Conclusion: The results suggest that, iron supplementation during gestation exerts an antidepressant-like effect in postpartum Sprague-Dawley rats, attenuates neuronal loss associated with depression and increases dendritic spine density.

4.
IBRO Neurosci Rep ; 12: 249-259, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35746979

ABSTRACT

Background: Cognitive dysfunction, presenting as learning and memory impairment, is a common manifestation in many chronic diseases of the nervous system. Some of these diseases include depression, epilepsy, and Alzheimer's disease. To date, few drugs or medicinal products have shown ability to improve learning and memory deficits. Neuroprotection is one of the mechanisms by which memory could be improved. The extract of Xylopia aethiopica and its kaurene derivative, xylopic acid, have previously demonstrated neuroprotective effects in animal models. The aim of the present study was to investigate the effect of an extract of Xylopia aethiopica fruit and xylopic acid, on learning and memory using murine models. Materials and methods: Unripe Xylopia aethiopica fruits were collected, dried, and extracted using 70% v/v ethanol. Xylopic acid was isolated from the fruits using petroleum ether, concentrated with ethyl acetate and then recrystallized with petroleum ether before purifying with ethanol (96%v/v). Institute of Cancer Research (ICR) mice received oral doses of the extract of Xylopia aethiopica (XAE; 30, 100 and 300 mg/kg), xylopic acid (XA; 30, 100 and mg/kg), citicoline (300 mg/kg), piracetam (300 mg/kg) or ketamine (30 mg/kg) and saline (vehicle). The animals were then taken through the Morris water maze test (MWM), spontaneous alternation Y-maze test (Y-maze), and novel object recognition test (NOR), to assess learning and memory. Results: In the NOR test, XAE (30, 100 and 300 mg/kg) and XA (30, 100 and 300 mg/kg) increased the percentage exploration and recognition index (p = 0.0005 and p < 0.0001, respectively) when compared to both vehicle and ketamine groups. Similarly, doses of XAE and XA as used in the NOR test increased the percentage alternation in the Y-maze test. Although XAE and XA treatments decreased the latencies to find hidden platform in the MWM test, it was not significantly different from the vehicle group. However, this decrease in latency differed significantly when compared to the ketamine group. Interestingly, both XAE and XA treatments increased the percentage frequency to the target quadrant in the probe trial of the MWM. It is noteworthy that in all the three models used, both the extract and xylopic acid performed better than piracetam and citicoline, the reference drugs. Conclusion: The ethanolic extract of Xylopia aethiopica fruit and xylopic acid improved exploratory learning and recognition memory, spatial working, recognition, and reference memories in the behavioral tests.

5.
IBRO Neurosci Rep ; 11: 194-199, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34939065

ABSTRACT

This study sets out to evaluate the effectiveness of transcutaneous electrical nerve stimulation (TENS) in the management of calf muscle spasticity in children with cerebral palsy. The study follows a one group pre-test-post-test design involving fifteen children with spastic cerebral palsy, presenting with calf muscle spasticity. Spasticity was assessed before and after a 30 min application of TENS to the bilateral calf muscles. The H-reflex (electromyography) of the calf muscles and Modified Ashworth Scale (MAS) served as a measure of spasticity. A goniometer was used to measure the range of motion (ROM) angles for ankle dorsiflexion. We report here no significant difference (p > 0.05) between the left and right H-reflex responses, MAS scores, and ROM scores recorded at baseline (pre-test). Correlation analysis show no correlation (p > 0.05) between the pre-test HA Max (maximum H-reflex amplitude)/MA Max (maximum M-Wave Amplitude) ratio and MAS scores of both the left and right calf muscles. However, TENS significantly reduced (p < 0.05) the HA of the left calf muscle and MAS scores of the left and right calf muscles. Additionally, TENS significantly increased the ROM scores of the left and right calf muscles. Our findings lend support to existing evidence that TENS is effective in reducing spasticity. The potential mechanism underlying this effect is a reduction in neuron excitability.

6.
Front Pharmacol ; 12: 610025, 2021.
Article in English | MEDLINE | ID: mdl-33762938

ABSTRACT

Extracts of the tropical Cinderella plant Synedrella nodiflora are used traditionally to manage convulsive conditions in the West African sub-region. This study sought to determine the neuronal basis of the effectiveness of these plant extracts to suppress seizure activity. Using the hippocampal slice preparation from rats, the ability of the extract to depress excitatory synaptic transmission and in vitro seizure activity were investigated. Bath perfusion of the hydro-ethanolic extract of Synedrella nodiflora (SNE) caused a concentration-dependent depression of evoked field excitatory postsynaptic potentials (fEPSPs) recorded extracellularly in the CA1 region of the hippocampus with maximal depression of about 80% and an estimated IC50 of 0.06 mg/ml. The SNE-induced fEPSP depression was accompanied by an increase in paired pulse facilitation. The fEPSP depression only recovered partially after 20 min washing out. The effect of SNE was not stimulus dependent as it was present even in the absence of synaptic stimulation. Furthermore, it did not show desensitization as repeat application after 10 min washout produced the same level of fEPSP depression as the first application. The SNE effect on fEPSPs was not via adenosine release as it was neither blocked nor reversed by 8-CPT, an adenosine A1 receptor antagonist. In addition, SNE depressed in vitro seizures induced by zero Mg2+ and high K+ -containing artificial cerebrospinal fluid (aCSF) in a concentration-dependent manner. The results show that SNE depresses fEPSPs and spontaneous bursting activity in hippocampal neurons that may underlie its ability to abort convulsive activity in persons with epilepsy.

7.
Exp Neurol ; 292: 1-10, 2017 06.
Article in English | MEDLINE | ID: mdl-28214516

ABSTRACT

Animal models have demonstrated that tinnitus is a pathology of dysfunctional excitability in the central auditory system, in particular in the dorsal cochlear nucleus (DCN) of the brainstem. We used a murine model and studied whether acoustic over-exposure leading to hearing loss and tinnitus, affects long-term potentiation (LTP) at DCN multisensory synapses. Whole cell and field potential recordings were used to study the effects on release probability and synaptic plasticity, respectively in brainstem slices. Shifts in hearing threshold were quantified by auditory brainstem recordings, and gap-induced prepulse inhibition of the acoustic startle reflex was used as an index for tinnitus. An increased release probability that saturated LTP and thereby induced metaplasticity at DCN multisensory synapses, was observed 4-5days following acoustic over-exposure. Perfusion of an NMDA receptor antagonist or decreasing extracellular calcium concentration, decreased the release probability and restored LTP following acoustic over-exposure. In vivo administration of magnesium-threonate following acoustic over-exposure restored LTP at DCN multisensory synapses, and reduced gap detection deficits observed four months following acoustic over-exposure. These observations suggest that consequences of noise-induced metaplasticity could underlie the gap detection deficits that follow acoustic over-exposure, and that early therapeutic intervention could target metaplasticity and alleviate tinnitus.


Subject(s)
Cochlear Nucleus/physiology , Long-Term Potentiation/physiology , Neurons/physiology , Acoustic Stimulation/methods , Animals , Female , Male , Models, Theoretical , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/physiology
8.
J Neurosci ; 34(7): 2684-8, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24523557

ABSTRACT

Exposure to loud sound (acoustic overexposure; AOE) induces hearing loss and damages cellular structures at multiple locations in the auditory pathway. Whether AOE can also induce changes in myelin sheaths of the auditory nerve (AN) is an important issue particularly because these changes can be responsible for impaired action potential propagation along the AN. Here we investigate the effects of AOE on morphological and electrophysiological features of the centrally directed part of the rat AN projecting from the cochlear spiral ganglion to brainstem cochlear nuclei. Using electron microscopy and immunocytochemistry, we show that AOE elongates the AN nodes of Ranvier and triggers notable perinodal morphological changes. Compound action potential recordings of the AN coupled to biophysical modeling demonstrated that these nodal and perinodal structural changes were associated with decreased conduction velocity and conduction block. Furthermore, AOE decreased the number of release sites in the cochlear nuclei associated with the reduced amplitudes of EPSCs evoked by AN stimulation. In conclusion, AN dysmyelination may be of fundamental importance in auditory impairment following exposure to loud sound.


Subject(s)
Cochlear Nerve/pathology , Hearing Loss, Noise-Induced/pathology , Myelin Sheath/pathology , Ranvier's Nodes/pathology , Action Potentials/physiology , Animals , Cochlear Nerve/physiopathology , Disease Models, Animal , Evoked Potentials, Auditory/physiology , Excitatory Postsynaptic Potentials/physiology , Female , Hearing Loss, Noise-Induced/physiopathology , Male , Patch-Clamp Techniques , Rats , Rats, Wistar
9.
PLoS One ; 7(5): e35955, 2012.
Article in English | MEDLINE | ID: mdl-22570693

ABSTRACT

The dorsal cochlear nucleus (DCN) is a first relay of the central auditory system as well as a site for integration of multimodal information. Vesicular glutamate transporters VGLUT-1 and VGLUT-2 selectively package glutamate into synaptic vesicles and are found to have different patterns of organization in the DCN. Whereas auditory nerve fibers predominantly co-label with VGLUT-1, somatosensory inputs predominantly co-label with VGLUT-2. Here, we used retrograde and anterograde transport of fluorescent conjugated dextran amine (DA) to demonstrate that the lateral vestibular nucleus (LVN) exhibits ipsilateral projections to both fusiform and deep layers of the rat DCN. Stimulating the LVN induced glutamatergic synaptic currents in fusiform cells and granule cell interneurones. We combined the dextran amine neuronal tracing method with immunohistochemistry and showed that labeled projections from the LVN are co-labeled with VGLUT-2 by contrast to VGLUT-1. Wistar rats were exposed to a loud single tone (15 kHz, 110 dB SPL) for 6 hours. Five days after acoustic overexposure, the level of expression of VGLUT-1 in the DCN was decreased whereas the level of expression of VGLUT-2 in the DCN was increased including terminals originating from the LVN. VGLUT-2 mediated projections from the LVN to the DCN are likely to play a role in the head position in response to sound. Amplification of VGLUT-2 expression after acoustic overexposure could be a compensatory mechanism from vestibular inputs in response to hearing loss and to a decrease of VGLUT-1 expression from auditory nerve fibers.


Subject(s)
Acoustic Stimulation , Cell Surface Extensions/metabolism , Cochlear Nucleus/metabolism , Vesicular Glutamate Transport Protein 2/metabolism , Vestibular Nucleus, Lateral/metabolism , Animals , Cell Surface Extensions/genetics , Gene Expression , Gene Expression Regulation , Presynaptic Terminals/metabolism , Rats , Rats, Wistar , Synapses/genetics , Synapses/metabolism , Vesicular Glutamate Transport Protein 1/genetics , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Glutamate Transport Protein 2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...