Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Toxicol ; 95(8): 2769-2784, 2021 08.
Article in English | MEDLINE | ID: mdl-34164711

ABSTRACT

Mitochondrial deregulation has emerged as one of the earliest pathological events in Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. Improvement of mitochondrial function in AD has been considered a relevant therapeutic approach. L-carnitine (LC), an amino acid derivative involved in the transport of long-chain fatty acids into mitochondria, was previously demonstrated to improve mitochondrial function, having beneficial effects in neurological disorders; moreover, acetyl-L-carnitine (ALC) is currently under phase 4 clinical trial for AD (ClinicalTrials.gov NCT01320527). Thus, in the present study, we investigated the impact of different forms of carnitines, namely LC, ALC and propionyl-L-carnitine (PLC) on mitochondrial toxicity induced by amyloid-beta peptide 1-42 oligomers (AßO; 1 µM) in mature rat hippocampal neurons. Our results indicate that 5 mM LC, ALC and PLC totally rescued the mitochondrial membrane potential and alleviated both the decrease in oxygen consumption rates and the increase in mitochondrial fragmentation induced by AßO. These could contribute to the prevention of neuronal death by apoptosis. Moreover, only ALC ameliorated AßO-evoked changes in mitochondrial movement by reducing the number of stationary mitochondria and promoting reversal mitochondrial movement. Data suggest that carnitines (LC, ALC and PLC) may act differentially to counteract changes in mitochondrial function and movement in neurons subjected to AßO, thus counteracting AD-related pathological phenotypes.


Subject(s)
Acetylcarnitine/pharmacology , Alzheimer Disease/drug therapy , Carnitine/analogs & derivatives , Neuroprotective Agents/pharmacology , Alzheimer Disease/physiopathology , Animals , Apoptosis/drug effects , Carnitine/pharmacology , Cells, Cultured , Female , Hippocampus/drug effects , Hippocampus/pathology , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/drug effects , Neurons/parasitology , Neuroprotective Agents/chemistry , Oxygen Consumption/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...