Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
FEMS Microbiol Ecol ; 99(2)2023 01 24.
Article in English | MEDLINE | ID: mdl-36631299

ABSTRACT

Marine deep subsurface sediment is often a microbial environment under energy-limited conditions. However, microbial life has been found to persist and even thrive in deep subsurface environments. The Mariana forearc represents an ideal location for determining how microbial life can withstand extreme conditions including pH 10-12.5 and depleted nutrients. The International Ocean Discovery Program Expedition 366 to the Mariana Convergent Margin sampled three serpentinizing seamounts located along the Mariana forearc chain with elevated concentrations of methane, hydrogen, and sulfide. Across all three seamount summits, the most abundant transcripts were for cellular maintenance such as cell wall and membrane repair, and the most abundant metabolic pathways were the Entner-Doudoroff pathway and tricarboxylic acid cycle. At flank samples, sulfur cycling involving taurine assimilation dominated the metatranscriptomes. The in situ activity of these pathways was supported by the detection of their metabolic intermediates. All samples had transcripts from all three domains of Bacteria, Archaea, and Eukarya, dominated by Burkholderiales, Deinococcales, and Pseudomonales, as well as the fungal group Opisthokonta. All samples contained transcripts for aerobic methane oxidation (pmoABC) and denitrification (nirKS). The Mariana forearc microbial communities show activity not only consistent with basic survival mechanisms, but also coupled metabolic reactions.


Subject(s)
Bacteria , Seawater , Seawater/microbiology , Bacteria/genetics , Bacteria/metabolism , Archaea/genetics , Archaea/metabolism , Geologic Sediments/microbiology , Methane/metabolism , Phylogeny
2.
Environ Sci Technol ; 56(12): 8155-8166, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35642897

ABSTRACT

Anthropogenic organofluorine compounds are recalcitrant, globally distributed, and a human health concern. Although rare, natural processes synthesize fluorinated compounds, and some bacteria have evolved mechanisms to metabolize organofluorine compounds. Pseudomonas sp. strain 273 grows with 1-fluorodecane (FD) and 1,10-difluorodecane (DFD) as carbon sources, but inorganic fluoride release was not stoichiometric. Metabolome studies revealed that this bacterium produces fluorinated anabolites and phospholipids. Mass spectrometric fatty acid profiling detected fluorinated long-chain (i.e., C12-C19) fatty acids in strain 273 cells grown with FD or DFD, and lipidomic profiling determined that 7.5 ± 0.2 and 82.0 ± 1.0% of the total phospholipids in strain 273 grown with FD or DFD, respectively, were fluorinated. The detection of the fluorinated metabolites and macromolecules represents a heretofore unrecognized sink for organofluorine, an observation with consequences for the environmental fate and transport of fluorinated aliphatic compounds.


Subject(s)
Alkanes , Lipid Bilayers , Alkanes/chemistry , Alkanes/metabolism , Bacteria/metabolism , Fatty Acids/metabolism , Humans , Lipid Bilayers/metabolism , Phospholipids/metabolism , Pseudomonas/metabolism
3.
Front Microbiol ; 12: 616045, 2021.
Article in English | MEDLINE | ID: mdl-34093456

ABSTRACT

The bacterial lipid membrane, consisting both of fatty acid (acyl) tails and polar head groups, responds to changing conditions through alteration of either the acyl tails and/or head groups. This plasticity is critical for cell survival as it allows maintenance of both the protective nature of the membrane as well as functioning membrane protein complexes. Bacteria that live in fatty-acid rich environments, such as those found in the human host, can exploit host fatty acids to synthesize their own membranes, in turn, altering their physiology. Enterococcus faecalis is such an organism: it is a commensal of the mammalian intestine where it is exposed to fatty-acid rich bile, as well as a major cause of hospital infections during which it is exposed to fatty acid containing-serum. Within, we employed an untargeted approach to detect the most common phospholipid species of E. faecalis OG1RF via ultra-high performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS). We examined not only how the composition responds upon exposure to host fatty acids but also how deletion of genes predicted to synthesize major polar head groups impact lipid composition. Regardless of genetic background and differing basal lipid composition, all strains were able to alter their lipid composition upon exposure to individual host fatty acids. Specific gene deletion strains, however, had altered survival to membrane damaging agents. Combined, the enterococcal lipidome is highly resilient in response to both genetic and environmental perturbation, likely contributing to stress survival.

4.
mBio ; 10(2)2019 04 16.
Article in English | MEDLINE | ID: mdl-30992358

ABSTRACT

Energy-starved microbes in deep marine sediments subsist at near-zero growth for thousands of years, yet the mechanisms for their subsistence are unknown because no model strains have been cultivated from most of these groups. We investigated Baltic Sea sediments with single-cell genomics, metabolomics, metatranscriptomics, and enzyme assays to identify possible subsistence mechanisms employed by uncultured Atribacteria, Aminicenantes, Actinobacteria group OPB41, Aerophobetes, Chloroflexi, Deltaproteobacteria, Desulfatiglans, Bathyarchaeota, and Euryarchaeota marine group II lineages. Some functions appeared to be shared by multiple lineages, such as trehalose production and NAD+-consuming deacetylation, both of which have been shown to increase cellular life spans in other organisms by stabilizing proteins and nucleic acids, respectively. Other possible subsistence mechanisms differed between lineages, possibly providing them different physiological niches. Enzyme assays and transcripts suggested that Atribacteria and Actinobacteria group OPB41 catabolized sugars, whereas Aminicenantes and Atribacteria catabolized peptides. Metabolite and transcript data suggested that Atribacteria utilized allantoin, possibly as an energetic substrate or chemical protectant, and also possessed energy-efficient sodium pumps. Atribacteria single-cell amplified genomes (SAGs) recruited transcripts for full pathways for the production of all 20 canonical amino acids, and the gene for amino acid exporter YddG was one of their most highly transcribed genes, suggesting that they may benefit from metabolic interdependence with other cells. Subsistence of uncultured phyla in deep subsurface sediments may occur through shared strategies of using chemical protectants for biomolecular stabilization, but also by differentiating into physiological niches and metabolic interdependencies.IMPORTANCE Much of life on Earth exists in a very slow-growing state, with microbes from deeply buried marine sediments representing an extreme example. These environments are like natural laboratories that have run multi-thousand-year experiments that are impossible to perform in a laboratory. We borrowed some techniques that are commonly used in laboratory experiments and applied them to these natural samples to make hypotheses about how these microbes subsist for so long at low activity. We found that some methods for stabilizing proteins and nucleic acids might be used by many members of the community. We also found evidence for niche differentiation strategies, and possibly cross-feeding, suggesting that even though they are barely growing, complex ecological interactions continue to occur over ultralong timescales.


Subject(s)
Archaea/classification , Bacteria/classification , Geologic Sediments/microbiology , Metagenome , Phylogeny , Archaea/growth & development , Bacteria/growth & development , Baltic States , Deltaproteobacteria/classification , Deltaproteobacteria/growth & development , Ecosystem , Genomics , Oceans and Seas , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Time Factors
5.
Metabolomics ; 15(4): 53, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30919213

ABSTRACT

INTRODUCTION: Lipidomics can reveal global alterations in a broad class of molecules whose functions are innately linked to physiology. Monitoring changes in the phospholipid composition of biological membranes in response to stressors can aid the development of targeted therapies. However, exact quantitation of cardiolipins is not a straightforward task due to low ionization efficiencies and poor chromatographic separation of these compounds. OBJECTIVE: The aim of this study was to develop a quantitative method for the detection of cardiolipins and other phospholipids using both a targeted and untargeted analyses with a Q-Exactive. METHODS: HILIC chromatography and high-resolution mass spectrometry with parallel reaction monitoring was used to measure changes in lipid concentration. Internal standards and fragmentation techniques allowed for the reliable quantitation of lipid species including: lysyl-phosphatidylglycerol, phosphatidylglycerol, and cardiolipin. RESULTS: The untargeted analysis was capable to detecting 6 different phospholipid classes as well as free fatty acids. The targeted analysis quantified up to 23 cardiolipins, 10 phosphatidylglycerols and 10 lysyl-phosphatidylglycerols with detection limits as low as 50 nM. Biological validation with Enterococcus faecalis demonstrates sensitivity in monitoring the incorporation of exogenously supplied free fats into membrane phospholipids. When supplemented with oleic acid, the amount of free oleic acid in the membrane was 100 times greater and the concentration of polyunsaturated cardiolipin increased to over 3.5 µM compared to controls. CONCLUSIONS: This lipidomics method is capable of targeted quantitation for challenging biologically relevant cardiolipins as well as broad, untargeted lipid profiling.


Subject(s)
Lipidomics/methods , Metabolomics/methods , Tandem Mass Spectrometry/methods , Cardiolipins/analysis , Chromatography, High Pressure Liquid/methods , Enterococcus faecalis/metabolism , Fatty Acids, Nonesterified/analysis , Lysine/analysis , Phosphatidylglycerols/analysis , Phospholipids/analysis
6.
Insect Biochem Mol Biol ; 106: 1-9, 2019 03.
Article in English | MEDLINE | ID: mdl-30630033

ABSTRACT

Populations of the fall armyworm (Spodoptera frugiperda) have developed resistance to transgenic corn producing the Cry1F insecticidal protein from the bacterium Bacillus thuringiensis (Bt). Resistance in S. frugiperda from Puerto Rico is genetically linked to a mutation in an ATP Binding Cassette subfamily C2 gene (SfABCC2) that results in a truncated, non-functional Cry1F toxin receptor protein. Since ABCC2 proteins are involved in active export of xenobiotics and other metabolites from the cell, we hypothesized that Cry1F-resistant fall armyworm with a non-functional SfABCC2 protein would display altered gut metabolome composition when compared to susceptible insects. Mass spectrometry and multivariate statistical analyses identified 126 unique metabolites from larval guts, of which 7 were found to display statistically significant altered levels between midguts from susceptible and Cry1F-resistant S. frugiperda larvae when feeding on meridic diet. Among these 7 differentially present metabolites, 6 were found to significantly accumulate (1.3-3.5-fold) in midguts from Cry1F-resistant larvae, including nucleosides, asparagine, and carbohydrates such as trehalose 6-phosphate and sedoheptulose 1/7-phosphate. In contrast, metabolomic comparisons of larvae fed on non-transgenic corn identified 5 metabolites with statistically significant altered levels and only 2 of them, 2-isopropylmalate and 3-phosphoserine, that significantly accumulated (2.3- and 3.5-fold, respectively) in midguts from Cry1F-resistant compared to susceptible larvae. These results identify a short list of candidate metabolites that may be transported by SfABCC2 and that may have the potential to be used as resistance markers.


Subject(s)
Bacterial Proteins/pharmacology , Endotoxins/pharmacology , Hemolysin Proteins/pharmacology , Insecticide Resistance/genetics , Insecticides/pharmacology , Metabolome/genetics , Spodoptera/drug effects , Animals , Bacillus thuringiensis Toxins , Gastrointestinal Tract/physiology , Larva/drug effects , Larva/growth & development , Metabolomics , Spodoptera/growth & development
7.
Proc Natl Acad Sci U S A ; 115(46): E10839-E10848, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30377267

ABSTRACT

Amyloidosis is a malignant pathology associated with the formation of proteinaceous amyloid fibrils that deposit in organs and tissues, leading to dysfunction and severe morbidity. More than 25 proteins have been identified as components of amyloid, but the most common form of systemic amyloidosis is associated with the deposition of amyloid composed of Ig light chains (AL). Clinical management of amyloidosis focuses on reducing synthesis of the amyloid precursor protein. However, recently, passive immunotherapy using amyloid fibril-reactive antibodies, such as 11-1F4, to remove amyloid from organs has been shown to be effective at restoring organ function in patients with AL amyloidosis. However, 11-1F4 does not bind amyloid in all AL patients, as evidenced by PET/CT imaging, nor does it efficiently bind the many other forms of amyloid. To enhance the reactivity and expand the utility of the 11-1F4 mAb as an amyloid immunotherapeutic, we have developed a pretargeting "peptope" comprising a multiamyloid-reactive peptide, p5+14, fused to a high-affinity peptide epitope recognized by 11-1F4. The peptope, known as p66, bound the 11-1F4 mAb in vitro with subnanomolar efficiency, exhibited multiamyloid reactivity in vitro and, using tissue biodistribution and SPECT imaging, colocalized with amyloid deposits in a mouse model of systemic serum amyloid A amyloidosis. Pretreatment with the peptope induced 11-1F4 mAb accumulation in serum amyloid A deposits in vivo and enhanced 11-1F4-mediated dissolution of a human AL amyloid extract implanted in mice.


Subject(s)
Amyloidosis/metabolism , Amyloidosis/therapy , Antibodies, Monoclonal/physiology , Amyloid/metabolism , Amyloidogenic Proteins/metabolism , Animals , Antibodies, Bispecific/immunology , Antibodies, Monoclonal/immunology , Cadaver , Epitopes/metabolism , Humans , Immunoglobulin Light Chains/immunology , Mice , Peptides/metabolism , Positron Emission Tomography Computed Tomography , Protein Binding , Serum Amyloid A Protein/metabolism , Tissue Distribution , Treatment Outcome
8.
Mycorrhiza ; 28(5-6): 421-433, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29860608

ABSTRACT

Metabolomic profiling is becoming an increasingly important technique in the larger field of systems biology by allowing the simultaneous measurement of thousands of small molecules participating in and resulting from cellular reactions. In this way, metabolomics presents an opportunity to observe the physiological state of a system, which may provide the ability to monitor the whole of cellular metabolism as the technology progresses. The arbuscular mycorrhizal fungus Gigaspora margarita has not previously been explored with regard to metabolite composition. To develop a better understanding of G. margarita and the influences of its endosymbiont Candidatus Glomeribacter gigasporarum, a metabolomic analysis was applied to quiescent and germinated spores with and without endobacteria. Over 100 metabolites were identified and greater than 2600 unique unidentified spectral features were observed. Multivariate analysis of the metabolomes was performed, and a differentiation between all metabolic states of spores and spores hosting the endobacteria was observed. The known metabolites were recruited to many biochemical pathways, with many being involved in maintenance of the antioxidant potential, tyrosine metabolism, and melanin production. Each of the pathways had higher metabolite abundances in the presence of the endosymbiont. These metabolomics data also agree with previously reported transcriptomics results demonstrating the capability of this technique to confirm hypotheses and showing the feasibility of multi-omic approaches for the study of arbuscular mycorrhizal fungi and their endobacterial communities. Challenges still exist in metabolomic analysis, e.g., the identification of compounds is demanding due to incomplete libraries. A metabolomics technique to probe the effects of bacterial endosymbionts on fungal physiology is presented herein, and this method is useful for hypothesis generation as well as testing as noted above.


Subject(s)
Bacteria/growth & development , Metabolomics/methods , Mycorrhizae/physiology , Chromatography, High Pressure Liquid , Mass Spectrometry , Metabolic Networks and Pathways , Metabolome , Mycorrhizae/metabolism , Spores, Fungal/metabolism , Spores, Fungal/physiology , Symbiosis
9.
J Med Food ; 21(3): 306-316, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29227176

ABSTRACT

Zyflamend is a highly controlled blend of 10 herbal extracts that synergistically impact multiple cell signaling pathways with anticancer and anti-inflammatory properties. More recently, its effects were shown to also modify cellular energetics, for example, activation of fatty acid oxidation and inhibition of lipogenesis. However, its general metabolic effects in vivo have yet to be explored. The objective of this study was to characterize the tissue specific metabolomes in response to supplementation of Zyflamend in mice, with a comparison of equivalent metabolomics data generated in plasma from humans supplemented with Zyflamend. Because Zyflamend has been shown to activate AMPK, the "energy sensor" of the cell, in vitro, the effects of Zyflamend on adiposity were also tested in the murine model. C57BL/6 mice were fed diets that mimicked the macro- and micronutrient composition of the U.S. diet with and without Zyflamend supplementation at human equivalent doses. Untargeted metabolomics was performed in liver, skeletal muscle, adipose, and plasma from mice consuming Zyflamend and in plasma from humans supplemented with Zyflamend at an equivalent dose. Adiposity in mice was significantly reduced in the Zyflamend-treated animals (compared with controls) without affecting body weight or weight gain. Based on KEGG pathway enrichment, purine and pyrimidine metabolism (potential regulators of AMPK) were particularly responsive to Zyflamend across all tissues, but only in mice. Consistent with the metabolomics data, Zyflamend activated AMPK and inhibited acetyl CoA-carboxylase in adipose tissue, key regulators of lipogenesis. Zyflamend reduces adipose tissue in mice through a mechanism that likely involves the activation of AMPK.


Subject(s)
Abdominal Fat/metabolism , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Antineoplastic Agents, Phytogenic/administration & dosage , Dietary Supplements , Liver/metabolism , Muscle, Skeletal/metabolism , Plant Extracts/administration & dosage , Abdominal Fat/enzymology , Adiposity , Adult , Aged , Animals , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Antineoplastic Agents, Phytogenic/adverse effects , Biomarkers/blood , Biomarkers/metabolism , Dietary Supplements/adverse effects , Discriminant Analysis , Energy Metabolism , Humans , Liver/enzymology , Male , Metabolomics/methods , Mice, Inbred C57BL , Middle Aged , Muscle, Skeletal/enzymology , Organ Specificity , Plant Extracts/adverse effects , Principal Component Analysis , Random Allocation , Species Specificity
10.
PLoS Pathog ; 13(6): e1006426, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28604843

ABSTRACT

Chronic alcohol consumption perturbs the normal intestinal microbial communities (dysbiosis). To investigate the relationship between alcohol-mediated dysbiosis and pulmonary host defense we developed a fecal adoptive transfer model, which allows us to investigate the impact of alcohol-induced gut dysbiosis on host immune response to an infectious challenge at a distal organ, independent of prevailing alcohol use. Male C57BL/6 mice were treated with a cocktail of antibiotics (ampicillin, gentamicin, neomycin, vancomycin, and metronidazole) via daily gavage for two weeks. A separate group of animals was fed a chronic alcohol (or isocaloric dextrose pair-fed controls) liquid diet for 10 days. Microbiota-depleted mice were recolonized with intestinal microbiota from alcohol-fed or pair-fed (control) animals. Following recolonization groups of mice were sacrificed prior to and 48 hrs. post respiratory infection with Klebsiella pneumoniae. Klebsiella lung burden, lung immunology and inflammation, as well as intestinal immunology, inflammation, and barrier damage were examined. Results showed that alcohol-associated susceptibility to K. pneumoniae is, in part, mediated by gut dysbiosis, as alcohol-naïve animals recolonized with a microbiota isolated from alcohol-fed mice had an increased respiratory burden of K. pneumoniae compared to mice recolonized with a control microbiota. The increased susceptibility in alcohol-dysbiosis recolonized animals was associated with an increase in pulmonary inflammatory cytokines, and a decrease in the number of CD4+ and CD8+ T-cells in the lung following Klebsiella infection but an increase in T-cell counts in the intestinal tract following Klebsiella infection, suggesting intestinal T-cell sequestration as a factor in impaired lung host defense. Mice recolonized with an alcohol-dysbiotic microbiota also had increased intestinal damage as measured by increased levels of serum intestinal fatty acid binding protein. Collectively, these results suggest that alterations in the intestinal immune response as a consequence of alcohol-induced dysbiosis contribute to increased host susceptibility to Klebsiella pneumonia.


Subject(s)
Alcohol Drinking/adverse effects , Gastrointestinal Microbiome/drug effects , Klebsiella Infections/immunology , Klebsiella Infections/microbiology , Klebsiella pneumoniae , Animals , Disease Models, Animal , Flow Cytometry , Lymphocytes/immunology , Male , Mice , Mice, Inbred C57BL
11.
Microb Cell ; 5(2): 74-87, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29417056

ABSTRACT

In Salmonella enterica, aminoimidazole carboxamide ribotide (AICAR) is a purine biosynthetic intermediate and a substrate of the AICAR transformylase/IMP cyclohydrolase (PurH) enzyme. When purH is eliminated in an otherwise wild-type strain, AICAR accumulates and indirectly inhibits synthesis of the essential coenzyme thiamine pyrophosphate (TPP). In this study, untargeted metabolomics approaches were used to i) corroborate previously defined metabolite changes, ii) define the global consequences of AICAR accumulation and iii) investigate the metabolic effects of mutations that restore thiamine prototrophy to a purH mutant. The data showed that AICAR accumulation led to an increase in the global regulator cyclic AMP (cAMP) and that disrupting central carbon metabolism could decrease AICAR and/or cAMP to restore thiamine synthesis. A mutant (icc) blocked in cAMP degradation that accumulated cAMP but had wild-type levels of AICAR was used to identify changes in the purH metabolome that were a direct result of elevated cAMP. Data herein describe the use of metabolomics to identify the metabolic state of mutant strains and probe the underlying mechanisms used by AICAR to inhibit thiamine synthesis. The results obtained provide a cautionary tale of using metabolite concentrations as the only data to define the physiological state of a bacterial cell.

SELECTION OF CITATIONS
SEARCH DETAIL
...