Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34771789

ABSTRACT

This study investigated the potential utilization of the TBM muck obtained from the Gold Line of the Doha Metro Project as a partial replacement of coarse aggregates in concrete mixes. First, the TBM muck particles were screened to coarse aggregate standard sizes. Then, concrete mixes were prepared using 0%, 25%, 50%, and 75% TBM muck replacement of coarse aggregates. The compressive and flexural strengths were determined for all mixes at 28 and 56 days. Moreover, the results obtained were validated using EDX analysis and SEM images. A t-statistical analysis did not show a significant impact of TBM muck usage on the compressive strength results of the concrete mixes. However, another t-statistical analysis showed that TBM muck replacement of coarse aggregates had adversely affected the flexural strength results. The EDX analysis indicated the presence of Na+ ions, which can replace the Ca2+ ions in the C-S-H gel, cause discontinuities of it, and hence reduce the strength at later ages. Finally, the SEM images showed that the ettringite and carbon hydroxide (C-H) contents in the mixes with TBM muck were higher than that of the control mix, while the C-S-H gel was less in such mixes.

2.
J Hazard Mater ; 229-230: 122-7, 2012 Aug 30.
Article in English | MEDLINE | ID: mdl-22704771

ABSTRACT

Waste spent catalyst is generated in Oman as a result of the cracking process of petroleum oil in the Mina Al-Fahl and Sohar Refineries. The disposal of spent catalyst is of a major concern to oil refineries. Stabilized spent catalyst was evaluated for use in road construction as a whole replacement for crushed aggregates in the sub-base and base layers and as a partial replacement for Portland cement in masonry blocks manufacturing. Stabilization is necessary as the waste spent catalyst exists in a powder form and binders are needed to attain the necessary strength required to qualify its use in road construction. Raw spent catalyst was also blended with other virgin aggregates, as a sand or filler replacement, for use in road construction. Compaction, unconfined compressive strength and leaching tests were performed on the stabilized mixtures. For its use in masonry construction, blocks were tested for unconfined compressive strength at various curing periods. Results indicate that the spent catalyst has a promising potential for use in road construction and masonry blocks without causing any negative environmental impacts.


Subject(s)
Construction Materials , Industrial Waste , Recycling/methods , Catalysis , Compressive Strength , Extraction and Processing Industry , Metals/analysis , Petroleum , Water Pollutants, Chemical/analysis
3.
J Hazard Mater ; 141(3): 557-64, 2007 Mar 22.
Article in English | MEDLINE | ID: mdl-16959405

ABSTRACT

This paper investigated several options for environmentally acceptable management techniques of tank bottom oily sludge. In particular, we tested the applicability of managing the sludge by three options: (1) as a fuel supplement; (2) in solidification; (3) as a road material. Environmental testing included determination of heavy metals concentration; toxic organics concentration and radiological properties. The assessment of tank bottom sludge as a fuel supplement included various properties such as proximate analysis, ultimate analysis and energy content. Solidified sludge mixtures and road application sludge mixtures were subjected to leaching using the toxicity characteristic leaching procedure (TCLP). Tank bottom sludge was characterized as having higher concentrations of lead, zinc, and mercury, but lower concentrations of nickel, copper and chromium in comparison with values reported in the literature. Natural occurring radioactive minerals (NORM) activity values obtained on different sludge samples were very low or negligible compared to a NORM standard value of 100Bq/g. The fuel assessment results indicate that the heating values, the carbon content and the ash content of the sludge samples are comparable with bituminous coal, sewage sludge, meat and bone meal and petroleum coke/coal mixture, but lower than those in car tyres and petroleum coke. The nitrogen content is lower than those fuels mentioned above, while the sulfur content seems comparable with bituminous coal, petroleum coke and a petroleum coke/coal mixture. The apparent lack of leachability of metals from solidification and road material sludge applications suggests that toxic metals and organics introduced to these applications are not readily attacked by weak acid solutions and would not be expected to migrate or dissolved into the water. Thus, in-terms of trace metals and organics, the suggested sludge applications would not be considered hazardous as defined by the TCLP leaching procedure.


Subject(s)
Industrial Waste , Petroleum , Waste Management/methods , Conservation of Energy Resources , Construction Materials , Hydrocarbons/analysis , Metals, Heavy/analysis , Oman , Radioisotopes/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...