Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Insects ; 11(11)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33114086

ABSTRACT

Control of the crop pest African cotton leafworm, Spodoptera littoralis (Boisduval), by chemical insecticides has led to serious resistance problems. Ajuga plants contain phytoecdysteroids (arthropod steroid hormone analogs regulating metamorphosis) and clerodanes (diterpenoids exhibiting antifeedant activity). We analyzed these compounds in leaf extracts of the Israeli Ajuga iva L. by liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) and thin-layer chromatography (TLC), and their efficiency at reducing S.littoralis fitness. First and third instars of S. littoralis were fed castor bean leaves (Ricinus communis) smeared with an aqueous suspension of dried methanolic crude extract of A. iva phytoecdysteroids and clerodanes. Mortality, larval weight gain, relative growth rate and survival were compared to feeding on control leaves. We used '4',6-diamidino-2-phenylindole (DAPI, a fluorescent stain) and phalloidin staining to localize A. iva crude leaf extract activity in the insect gut. Ajuga iva crude leaf extract (50, 100 and 250 µg/µL) significantly increased mortality of first-instar S. littoralis (36%, 70%, and 87%, respectively) compared to controls (6%). Third-instar larval weight gain decreased significantly (by 52%, 44% and 30%, respectively), as did relative growth rate (-0.05 g/g per day compared to the relevant controls), ultimately resulting in few survivors. Crude leaf extract (250 µg/µL) reduced gut size, with relocation of nuclei and abnormal actin-filament organization. Ajug iva extract has potential for alternative, environmentally safe insect-pest control.

2.
Antibiotics (Basel) ; 5(3)2016 Jun 29.
Article in English | MEDLINE | ID: mdl-27367739

ABSTRACT

Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of "pathogen-specific antibiotics," in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification.

3.
Microb Ecol ; 69(1): 204-14, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25135816

ABSTRACT

Sap-feeding insects harbor diverse microbial endosymbionts that play important roles in host ecology and evolution, including contributing to host pest status. The vine mealybug, Planococcus ficus, is a serious pest of grapevines, vectoring a number of pathogenic grape viruses. Previous studies have shown that virus transmission is abolished when mealybugs are raised in the laboratory on potato. To examine the possible role of microbial symbionts in virus transmission, the archaeal, bacterial, and fungal microbiota of field and laboratory P. ficus were characterized using molecular and classical microbiological methods. Lab and field colonies of P. ficus harbored different microbiota. While both were dominated by the bacterial obligate nutritional symbionts Moranella and Tremblaya, field samples also harbored a third bacterium that was allied with cluster L, a lineage of bacterial symbionts previously identified in aphids. Archaea were not found in any of the samples. Fungal communities in field-collected mealybugs were dominated by Metschnikowia and Cladosporium species, while those from laboratory-reared mealybugs were dominated by Alternaria and Cladosporium species. In conclusion, this study has identified a diverse set of microbes, most of which appear to be facultatively associated with P. ficus, depending on environmental conditions. The role of various members of the mealybug microbiome, as well as how the host plant affects microbial community structure, remains to be determined.


Subject(s)
Hemiptera/microbiology , Animals
4.
BMC Genomics ; 14: 168, 2013 Mar 12.
Article in English | MEDLINE | ID: mdl-23496978

ABSTRACT

BACKGROUND: The yeast Metschnikowia fructicola is an antagonist with biological control activity against postharvest diseases of several fruits. We performed a transcriptome analysis, using RNA-Seq technology, to examine the response of M. fructicola with citrus fruit and with the postharvest pathogen, Penicillium digitatum. RESULTS: More than 26 million sequencing reads were assembled into 9,674 unigenes. Approximately 50% of the unigenes could be annotated based on homology matches in the NCBI database. Based on homology, sequences were annotated with a gene description, gene ontology (GO term), and clustered into functional groups. An analysis of differential expression when the yeast was interacting with the fruit vs. the pathogen revealed more than 250 genes with specific expression responses. In the antagonist-pathogen interaction, genes related to transmembrane, multidrug transport and to amino acid metabolism were induced. In the antagonist-fruit interaction, expression of genes involved in oxidative stress, iron homeostasis, zinc homeostasis, and lipid metabolism were induced. Patterns of gene expression in the two interactions were examined at the individual transcript level by quantitative real-time PCR analysis (RT-qPCR). CONCLUSION: This study provides new insight into the biology of the tritrophic interactions that occur in a biocontrol system such as the use of the yeast, M. fructicola for the control of green mold on citrus caused by P. digitatum.


Subject(s)
Gene Expression Regulation, Fungal , Metschnikowia/genetics , Plant Diseases/genetics , Citrus paradisi/chemistry , Citrus paradisi/genetics , Fruit/genetics , Fruit/microbiology , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Metschnikowia/metabolism , Penicillium/genetics , Penicillium/pathogenicity , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...