Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Malar J ; 22(1): 126, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37061695

ABSTRACT

BACKGROUND: The human host elicits specific immune responses after exposure to various life stages of the malaria parasite as well as components of mosquito saliva injected into the host during a mosquito bite. This study describes differences in IgG responses against antigens derived from the sporozoite (PfCSP), asexual stage parasite (PfEBA175) and the gametocyte (Pfs230), in addition to an Anopheles gambiae salivary gland antigen (gSG6-P1), in two communities in Ghana with similar blood stage malaria parasite prevalence. METHODS: This study used archived plasma samples collected from an earlier cross-sectional study that enrolled volunteers aged from 6 months to 70 years from Simiw, peri-urban community (N = 347) and Obom, rural community (N = 291). An archived thick and thin blood smear for microscopy was used for the estimation of Plasmodium parasite density and species and DNA extraction from blood spots and P. falciparum confirmation was performed using PCR. This study used the stored plasma samples to determine IgG antibody levels to P. falciparum and Anopheles salivary antigens using indirect ELISA. RESULTS: Individuals from Simiw had significantly higher levels of IgG against mosquito gSG6-P1 [median (95%CI)] [2.590 (2.452-2.783) ng/mL] compared to those from Obom [2.119 (1.957-2.345) ng/mL], p < 0.0001. Both IgG responses against Pfs230proC (p = 0.0006), and PfCSP (p = 0.002) were significantly lower in volunteers from Simiw compared to the participants from Obom. The seroprevalence of PfEBA-175.5R (p = 0.8613), gSG6-P1 (p = 0.0704), PfCSP (p = 0.7798) IgG were all similar in Obom and Simiw. However, Pfs230 seroprevalence was significantly higher at Obom compared to Simiw (p = 0.0006). Spearman correlation analysis showed no significant association between IgG responses against gSG6-P1, PfCSP, Pfs230proC and PfEBA-175.5R and parasite density at both Obom and Simiw (p > 0.05). CONCLUSION: In conclusion, the study showed that participants from Simiw had higher concentrations of circulating gSG6-P1 IgG antibodies but lower concentrations of P. falciparum antibodies, PfCSP IgG and Pfs230proC IgG compared to participants from Obom.


Subject(s)
Anopheles , Insect Bites and Stings , Malaria, Falciparum , Malaria , Animals , Humans , Plasmodium falciparum , Ghana/epidemiology , Antibody Formation , Seroepidemiologic Studies , Cross-Sectional Studies , Malaria, Falciparum/parasitology , Malaria/epidemiology , Immunoglobulin G , Anopheles/physiology
2.
Diagnostics (Basel) ; 13(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36766633

ABSTRACT

Among the barriers to accessing adequate treatment and high-level monitoring for malaria febrile patients is the lack of effective prognostic markers. Neopterin, which is a marker of monocyte/macrophage activation, was found have increased during severe malaria. In this study, we used quantitative ELISA in order to assess the levels of plasma soluble neopterin in 151 patients from a cohort of Beninese children with severe malaria. We evaluated the prognostic accuracy of this molecule in order to predict the outcome of the disease. Our results show that neopterin levels were not significantly different between patients with different forms of severe malaria, including severe non-cerebral malaria (SNCM) and cerebral malaria (CM). However, the levels of this molecule were found to be higher in patients with severe malarial anemia (SMA) among both CM and SNCM cases (p-value = 0.02). Additionally, the levels of this molecule were found to be higher in patients who died from these pathologies compared to those who survived among the two clinical groups (p-value < 0.0001) and within the same group (p-value < 0.0001 for the CM group, p-value = 0.0046 for the SNCM group). The AUC-ROC for fatality among all the severe cases was 0.77 with a 95%CI of (0.69-0.85). These results suggest that plasma neopterin levels constitute a potential biomarker for predicting fatality among severe falciparum malaria patients.

3.
J Infect Dis ; 227(2): 179-182, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36416015

ABSTRACT

The endothelial protein C receptor (EPCR)-rs867186 G allele has been linked to high plasma levels of soluble EPCR (sEPCR) and controversially associated with either susceptibility or resistance to severe and cerebral malaria. In this study, quantitative enzyme-linked immunosorbent assay and sequencing were used to assess sEPCR levels and EPCR-rs867186 polymorphism in blood samples from Beninese children with different clinical presentations of malaria. Our findings show that sEPCR levels were higher at hospital admission than during convalescence and that EPCR-rs867186 G allele was associated with increased sEPCR plasma levels, malaria severity, and mortality rate (P < .001, P = .03, and P = .04, respectively), suggesting a role of sEPCR in the pathogenesis of severe malaria.


Subject(s)
Malaria, Cerebral , Receptors, Cell Surface , Humans , Child , Endothelial Protein C Receptor/genetics , Polymorphism, Genetic
4.
Sci Rep ; 12(1): 21582, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36517505

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic devastated countries worldwide, and resulted in a global shutdown. Not all infections are symptomatic and hence the extent of SARS-CoV-2 infection in the community is unknown. The paper presents the dynamics of the SARS-CoV-2 epidemic in the Greater Accra Metropolis, describing the evolution of seroprevalence through time and by age group. Three repeated independent population-based surveys at 6-week intervals were conducted in from November 2020 to July 2021. The global and by age-groups weighted seroprevalences were estimated and the risk factors for SARS-CoV-2 antibody seropositivity were assessed using logistic regression. The overall age-standardized SARS-CoV-2 antibody seroprevalence for both spike and nucleocapsid increased from 13.8% (95% CI 11.9, 16.1) in November 2020 to 39.6% (95% CI 34.8, 44.6) in July 2021. After controlling for gender, marital status, education level, and occupation, the older age group over 40 years had a higher odds of seropositivity than the younger age group (OR 3.0 [95% CI 1.1-8.5]) in the final survey. Pupils or students had 3.3-fold increased odds of seropositivity (OR 3.2 [95% CI 1.1-8.5]) compared to the unemployed. This study reinforces that, SARS-CoV-2 infections have been significantly higher than reported.


Subject(s)
COVID-19 , Humans , Aged , COVID-19/epidemiology , SARS-CoV-2 , Seroepidemiologic Studies , Ghana/epidemiology , Pandemics , Antibodies, Viral
5.
Sci Rep ; 12(1): 12994, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35906450

ABSTRACT

Members of the highly polymorphic Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family expressed on the surface of infected erythrocytes (IEs) are important virulence factors, which mediate vascular adhesion of IEs via endothelial host receptors and are targets of naturally acquired immunity. The PfEMP1 family can be divided into clinically relevant subgroups, of which some bind intercellular adhesion molecule 1 (ICAM-1). While the acquisition of IgG specific for ICAM-1-binding DBLß domains is known to differ between PfEMP1 groups, its ability to induce antibody-dependent cellular phagocytosis (ADCP) is unclear. We therefore measured plasma levels of DBLß-specific IgG, the ability of such IgG to inhibit PfEMP1-binding to ICAM-1, and its ability to opsonize IEs for ADCP, using plasma from Beninese children with severe (SM) or uncomplicated malaria (UM). IgG specific for DBLß from group A and B ICAM-1-binding PfEMP1 were dominated by IgG1 and IgG3, and were similar in SM and UM. However, levels of plasma IgG inhibiting ICAM-1-binding of group A DBLß of PFD1235w was significantly higher in children with UM than SM, and acute UM plasma induced a higher ADCP response than acute SM plasma.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Antibodies, Protozoan , Antigens, Protozoan , Benin , Child , Erythrocytes/metabolism , Humans , Immunoglobulin G , Intercellular Adhesion Molecule-1/metabolism , Phagocytosis , Protozoan Proteins
6.
Malar J ; 21(1): 115, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35379236

ABSTRACT

BACKGROUND: Cytoadhesion and sequestration of Plasmodium falciparum infected red blood cells (iRBC) in the microvasculature of vital organs are a major cause of malaria pathology. Several studies have provided evidence on the implication of the human host intercellular adhesion molecule-1 (ICAM-1) as a major receptor for iRBCs binding to P. falciparum erythrocyte membrane protein 1 (PfEMP1) in the development of severe and cerebral malaria. The genetic polymorphism K29M in the immunoglobulin-like domain of ICAM-1, known as ICAM-1Kilifi, has been associated with either increased or decreased risk of developing cerebral malaria. METHODS: To provide more conclusive results, the genetic polymorphism of ICAM-1Kilifi was assessed by PCR and sequencing in blood samples from 215 Beninese children who presented with either mild or severe malaria including cerebral malaria. RESULTS AND CONCLUSIONS: The results showed that in this cohort of Beninese children, the ICAM-1kilifi variant is present at the frequencies of 0.27, similar to the frequency observed in other African countries. This ICAM-1kilifi variant was not associated with disease severity in agreement with other findings from the Gambia, Tanzania, Malawi, Gabon, and Thailand, suggesting no evidence of a direct link between this polymorphism and the pathogenesis of severe and cerebral malaria.


Subject(s)
Malaria, Cerebral , Malaria, Falciparum , Child , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Malawi , Plasmodium falciparum
7.
Diagnostics (Basel) ; 12(2)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35204613

ABSTRACT

Malaria-related deaths could be prevented if powerful diagnostic and reliable prognostic biomarkers were available to allow rapid prediction of the clinical severity allowing adequate treatment. Using quantitative ELISA, we assessed the plasma concentrations of Procalcitonin, Pentraxine-3, Ang-2, sTie-2, suPAR, sEPCR and sICAM-1 in a cohort of Beninese children with malaria to investigate their potential association with clinical manifestations of malaria. We found that all molecules showed higher levels in children with severe or cerebral malaria compared to those with uncomplicated malaria (p-value < 0.005). Plasma concentrations of Pentraxine-3, Procalcitonin, Ang-2 and the soluble receptors were significantly higher in children with coma as defined by a Blantyre Coma Score < 3 (p < 0.001 for Pentraxine-3, suPAR, and sTie-2, p = 0.004 for PCT, p = 0.005 for sICAM-1, p = 0.04 for Ang-2). Moreover, except for the PCT level, the concentrations of Pentraxine-3, suPAR, sEPCR, sICAM-1, sTie-2 and Ang-2 were higher among children who died from severe malaria compared to those who survived (p = 0.037, p = 0.035, p < 0.0001, p= 0.0008, p = 0.01 and p = 0.02, respectively). These findings indicate the ability of these molecules to accurately discriminate among clinical manifestations of malaria, thus, they might be potentially useful for the early prognostic of severe and fatal malaria, and to improve management of severe cases.

9.
Sci Rep ; 11(1): 3680, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33574457

ABSTRACT

The Plasmodium falciparum erythrocyte-membrane-protein-1 (PF3D7_1150400/PF11_0521) contains both domain cassette DC13 and DBLß3 domain binding to EPCR and ICAM-1 receptors, respectively. This type of PfEMP1 proteins with dual binding specificity mediate specific interactions with brain micro-vessels endothelium leading to the development of cerebral malaria (CM). Using plasma collected from children at time of hospital admission and after 30 days, we study an acquisition of IgG response to PF3D7_1150400/PF11_0521 DC13 and DBLß3_D4 recombinant constructs, and five peptides located within these constructs, specifically in DBLα1.7_D2 and DBLß3_D4 domains. We found significant IgG responses against the entire DC13, PF11_0521_DBLß3_D4 domain, and peptides. The responses varied against different peptides and depended on the clinical status of children. The response was stronger at day 30, and mostly did not differ between CM and uncomplicated malaria (UM) groups. Specifically, the DBLß3 B3-34 peptide that contains essential residues involved in the interaction between PF11_0521 DBLß3_D4 domain and ICAM-1 receptor demonstrated significant increase in reactivity to IgG1 and IgG3 antibodies at convalescence. Further, IgG reactivity in CM group at time of admission against functionally active (ICAM-1-binding) PF11_0521 DBLß3_D4 domain was associated with protection against severe anemia. These results support development of vaccine based on the PF3D7_1150400/PF11_0521 structures to prevent CM.


Subject(s)
Immunoglobulin G/blood , Malaria, Cerebral/immunology , Malaria, Falciparum/immunology , Peptides/immunology , Protozoan Proteins/immunology , Anemia/complications , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antigens, Protozoan/blood , Antigens, Protozoan/immunology , Brain/immunology , Brain/metabolism , Brain/parasitology , Brain/pathology , Child, Preschool , Endothelial Protein C Receptor/genetics , Endothelial Protein C Receptor/immunology , Endothelium, Vascular/metabolism , Endothelium, Vascular/parasitology , Erythrocytes/parasitology , Female , Humans , Immunoglobulin G/immunology , Infant , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/immunology , Malaria, Cerebral/blood , Malaria, Cerebral/genetics , Malaria, Cerebral/parasitology , Malaria, Falciparum/blood , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Male , Peptides/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Protein Binding/genetics , Protein Binding/immunology , Protozoan Proteins/genetics
10.
Article in English | MEDLINE | ID: mdl-32179528

ABSTRACT

The continuous spread of antimalarial drug resistance is a threat to current chemotherapy efficacy. Therefore, characterizing the genetic diversity of drug resistance markers is needed to follow treatment effectiveness and further update control strategies. Here, we genotyped Plasmodium falciparum resistance gene markers associated with sulfadoxine-pyrimethamine (SP) and artemisinin-based combination therapy (ACT) in isolates from pregnant women in Ghana. The prevalence of the septuple IRN I- A/FG K GS/Tpfdhfr/pfdhps haplotypes, including the pfdhps A581G and A613S/T mutations, was high at delivery among post-SP treatment isolates (18.2%) compared to those of first antenatal care (before initiation of intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine [IPTp-SP]; 6.1%; P = 0.03). Regarding the pfk13 marker gene, two nonsynonymous mutations (N458D and A481C) were detected at positions previously related to artemisinin resistance in isolates from Southeast Asia. These mutations were predicted in silico to alter the stability of the pfk13 propeller-encoding domain. Overall, these findings highlight the need for intensified monitoring and surveillance of additional mutations associated with increased SP resistance as well as emergence of resistance against artemisinin derivatives.


Subject(s)
Antimalarials , Malaria, Falciparum , Parasites , Pharmaceutical Preparations , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Combinations , Drug Resistance/genetics , Female , Ghana , Humans , Malaria, Falciparum/drug therapy , Plasmodium falciparum/genetics , Pregnancy , Pregnant Women , Protozoan Proteins/therapeutic use , Pyrimethamine/pharmacology , Pyrimethamine/therapeutic use , Sulfadoxine/pharmacology , Sulfadoxine/therapeutic use , Tetrahydrofolate Dehydrogenase/genetics
11.
PLoS One ; 14(9): e0220977, 2019.
Article in English | MEDLINE | ID: mdl-31525211

ABSTRACT

BACKGROUND: Primaquine is recommended by the World Health Organization (WHO) for radical treatment of Plasmodium vivax malaria. This drug is known to provoke acute hemolytic anemia in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Due to lack of data on G6PD deficiency, the use of primaquine has been limited in Africa. In the present study, G6PD deficiency was investigated in blood donors of various ethnic groups living in Nouakchott, a P. vivax endemic area in Mauritania. METHODOLOGY/PRINCIPAL FINDINGS: Venous blood samples from 443 healthy blood donors recruited at the National Transfusion Center in Nouakchott were screened for G6PD activity using the CareStart G6PD deficiency rapid diagnostic test. G6PD allelic variants were investigated using DiaPlexC G6PD genotyping kit that detects African (A-) and Mediterranean (B-) variants. Overall, 50 of 443 (11.3%) individuals (49 [11.8%] men and 1 [3.7%] woman) were phenotypically deficient. Amongst men, Black Africans had the highest prevalence of G6PD deficiency (15 of 100 [15%]) and White Moors the lowest (10 of 168, [5.9%]). The most commonly observed G6PD allelic variants among 44 tested G6PD-deficient men were the African variant A- (202A/376G) in 14 (31.8%), the Mediterranean variant B- (563T) in 13 (29.5%), and the Betica-Selma A- (376G/968C) allelic variant in 6 (13.6%). The Santamaria A- variant (376G/542T) and A variant (376G) were observed in only one and two individuals, respectively. None of the expected variants was observed in 8 (18.2%) of the tested phenotypically G6PD-deficient men. CONCLUSION: This is the first published data on G6PD deficiency in Mauritanians. The prevalence of phenotypic G6PD deficiency was relatively high (11.3%). It was mostly associated with either African or Mediterranean variants, in agreement with diverse Arab and Black African origins of the Mauritanian population.


Subject(s)
Genetic Variation , Glucosephosphate Dehydrogenase Deficiency/complications , Glucosephosphate Dehydrogenase Deficiency/genetics , Glucosephosphate Dehydrogenase/genetics , Malaria, Vivax/complications , Malaria, Vivax/diagnosis , Plasmodium vivax , Alleles , Diagnostic Tests, Routine , Female , Genotype , Humans , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Male , Mauritania/epidemiology , Mauritania/ethnology , Phenotype
12.
Emerg Infect Dis ; 25(2): 273-280, 2019 02.
Article in English | MEDLINE | ID: mdl-30666926

ABSTRACT

A malaria survey was conducted in Atar, the northernmost oasis city in Mauritania, during 2015-2016. All febrile patients in whom malaria was suspected were screened for malaria by using rapid diagnostic testing and microscopic examination of blood smears and later confirmed by PCR. Of 453 suspected malaria cases, 108 (23.8%) were positive by rapid diagnostic testing, 154 (34.0%) by microscopic examination, and 162 (35.7%) by PCR. Malaria cases were observed throughout the year and among all age groups. Plasmodium vivax was present in 120/162 (74.1%) cases, P. falciparum in 4/162 (2.4%), and mixed P. falciparum-P. vivax in 38/162 (23.4%). Malaria is endemic in northern Mauritania and could be spreading farther north in the Sahara, possibly because of human-driven environmental changes. Further entomologic and parasitologic studies and monitoring are needed to relate these findings to major Anopheles mosquito vectors and to design and implement strategies for malaria prevention and control.


Subject(s)
Malaria/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Genes, Mitochondrial , Humans , Infant , Malaria/diagnosis , Malaria/parasitology , Male , Mauritania/epidemiology , Middle Aged , Plasmodium/genetics , Population Surveillance , Prevalence , Young Adult
13.
Malar J ; 17(1): 416, 2018 Nov 08.
Article in English | MEDLINE | ID: mdl-30409138

ABSTRACT

BACKGROUND: Plasmodium vivax is the predominant malaria species in northern Mauritania. Molecular data on P. vivax isolates circulating in West Africa are scarce. The present study analysed molecular markers associated with resistance to antifolates (Pvdhfr and Pvdhps), chloroquine (Pvmdr1), and artemisinin (Pvk12) in P. vivax isolates collected in two cities located in the Saharan zone of Mauritania. METHODS: Blood samples were obtained from P. vivax-infected patients recruited for chloroquine therapeutic efficacy study in 2013 and febrile patients spontaneously consulting health facilities in Nouakchott and Atar in 2015-2016. Fragments of Pvdhfr (codons 13, 33, 57, 58, 61, 117, and 174), Pvdhps (codons 382, 383, 512, 553, and 585), Pvmdr1 (codons 976 and 1076) and Pvk12 (codon 552) genes were amplified by PCR and sequenced. RESULTS: Most of the isolates in Nouakchott (126/154, 81.8%) and Atar (44/45, 97.8%) carried the wild-type Pvdhfr allelic variant (IPFSTSI). In Nouakchott, all mutants (28/154; 18.2%) had double Pvdhfr mutations in positions 58 and 61 (allelic variant IPFRMSI), whereas in Atar only 1 isolate was mutant (S117N, allelic variant IPFSTNI). The wild-type Pvdhps allelic variant (SAKAV) was found in all tested isolates (Nouakchott, n = 93; Atar, n = 37). Few isolates in Nouakchott (5/115, 4.3%) and Atar (3/79, 3.8%) had the mutant Pvmdr1 allele 976F or 1076L, but not both, including in pre-treatment isolates obtained from patients treated successfully with chloroquine. All isolates (59 in Nouakchott and 48 in Atar) carried the wild-type V552 allele in Pvk12. CONCLUSIONS: Polymorphisms in Pvdhfr, Pvdhps, Pvmdr1, and Pvk12 were limited in P. vivax isolates collected recently in Nouakchott and Atar. Compared to the isolates collected in Nouakchott in 2007-2009, there was no evidence for selection of mutants. The presence of one, but not both, of the two potential markers of chloroquine resistance in Pvmdr1 in pre-treatment isolates did not influence the clinical outcome, putting into question the role of Pvmdr1 mutant alleles 976F and 1076L in treatment failure. Molecular surveillance is an important component of P. vivax malaria control programme in the Saharan zone of Mauritania to predict possible emergence of drug-resistant parasites.


Subject(s)
Antimalarials/pharmacology , Drug Resistance/genetics , Malaria, Vivax/parasitology , Multidrug Resistance-Associated Proteins/genetics , Plasmodium vivax/genetics , Polymorphism, Genetic , Protozoan Proteins/genetics , Humans , Malaria, Vivax/epidemiology , Mauritania/epidemiology , Sequence Analysis, DNA
14.
BMC Med ; 16(1): 181, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30269689

ABSTRACT

BACKGROUND: Humanity has become largely dependent on artemisinin derivatives for both the treatment and control of malaria, with few alternatives available. A Plasmodium falciparum phenotype with delayed parasite clearance during artemisinin-based combination therapy has established in Southeast Asia, and is emerging elsewhere. Therefore, we must know how fast, and by how much, artemisinin-resistance can strengthen. METHODS: P. falciparum was subjected to discontinuous in vivo artemisinin drug pressure by capitalizing on a novel model that allows for long-lasting, high-parasite loads. Intravenous artesunate was administered, using either single flash-doses or a 2-day regimen, to P. falciparum-infected humanized NOD/SCID IL-2Rγ-/-immunocompromised mice, with progressive dose increments as parasites recovered. The parasite's response to artemisinins and other available anti-malarial compounds was characterized in vivo and in vitro. RESULTS: Artemisinin resistance evolved very rapidly up to extreme, near-lethal doses of artesunate (240 mg/kg), an increase of > 3000-fold in the effective in vivo dose, far above resistance levels reported from the field. Artemisinin resistance selection was reproducible, occurring in 80% and 41% of mice treated with flash-dose and 2-day regimens, respectively, and the resistance phenotype was stable. Measuring in vitro sensitivity proved inappropriate as an early marker of resistance, as IC50 remained stable despite in vivo resistance up to 30 mg/kg (ART-S: 10.7 nM (95% CI 10.2-11.2) vs. ART-R30: 11.5 nM (6.6-16.9), F = 0.525, p = 0.47). However, when in vivo resistance strengthened further, IC50 increased 10-fold (ART-R240 100.3 nM (92.9-118.4), F = 304.8, p < 0.0001), reaching a level much higher than ever seen in clinical samples. Artemisinin resistance in this African P. falciparum strain was not associated with mutations in kelch-13, casting doubt over the universality of this genetic marker for resistance screening. Remarkably, despite exclusive exposure to artesunate, full resistance to quinine, the only other drug sufficiently fast-acting to deal with severe malaria, evolved independently in two parasite lines exposed to different artesunate regimens in vivo, and was confirmed in vitro. CONCLUSION: P. falciparum has the potential to evolve extreme artemisinin resistance and more complex patterns of multidrug resistance than anticipated. If resistance in the field continues to advance along this trajectory, we will be left with a limited choice of suboptimal treatments for acute malaria, and no satisfactory option for severe malaria.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Artesunate/therapeutic use , Malaria, Falciparum/drug therapy , Animals , Antimalarials/pharmacology , Artemisinins/pharmacology , Artesunate/pharmacology , Drug Resistance , Female , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Quinine/therapeutic use
15.
J Infect Dis ; 215(12): 1918-1925, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28863469

ABSTRACT

Background: Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates the binding and accumulation of infected erythrocytes (IE) to blood vessels and tissues. Specific interactions have been described between PfEMP1 and human endothelial proteins CD36, intercellular adhesion molecule-1 (ICAM-1), and endothelial protein C receptor (EPCR); however, cytoadhesion patterns typical for pediatric malaria syndromes and the associated PfEMP1 members are still undefined. Methods: In a cohort of 94 hospitalized children with malaria, we characterized the binding properties of IE collected on admission, and var gene transcription using quantitative polymerase chain reaction. Results: IE from patients with cerebral malaria were more likely to bind EPCR and ICAM-1 than IE from children with uncomplicated malaria (P = .007). The level of transcripts encoding CIDRα1.4 and CIDRα1.5 domain subclasses was higher in patients with severe disease (P < .05). IE populations exhibiting binding to all 3 receptors had higher levels of transcripts encoding PfEMP1 with CIDRα1.4 and Duffy binding-like (DBL)-ß3 domains than parasites, which only bound CD36. Conclusions: These results underpin the significance of EPCR binding in pediatric malaria patients that require hospital admission, and support the notion that complementary receptor interactions of EPCR binding PfEMP1with ICAM-1 amplifies development of severe malaria symptoms.


Subject(s)
Antigens, CD/metabolism , Intercellular Adhesion Molecule-1/metabolism , Malaria, Cerebral/parasitology , Malaria, Falciparum/parasitology , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Receptors, Cell Surface/metabolism , Cell Adhesion , Child, Preschool , Endothelial Cells/metabolism , Endothelial Protein C Receptor , Humans , Infant , Protein Binding , Transcription, Genetic
16.
Malar J ; 16(1): 311, 2017 08 03.
Article in English | MEDLINE | ID: mdl-28774303

ABSTRACT

BACKGROUND: Artemisinin-based combination therapy (ACT) and novel drug combinations are available and used in African countries to treat uncomplicated malaria. Network meta-analysis methods are rarely and poorly applied for the comparison of their efficacies. This method was applied on a set of randomized controlled trials to illustrate its usefulness. METHODS: A literature review available in Pubmed was conducted in July 2016. Eligible studies, conducted in sub-Saharan Africa, published between 2002 and 2016, focused on randomized controlled trials of at least two artemisinin-based combinations to treat uncomplicated malaria in children and adults. Agglomerate data were: the number of PCR-corrected adequate clinical and parasitological response (ACPR) on day 28, used as the primary enDHAPoint in all interventions, the number of participants and the list of treatments. A Bayesian random effect meta-analysis using a binary outcome was the method to compare the efficacy. Ranking measure was used to obtain a hierarchy of the competing interventions. RESULTS: In total, 76 articles were included; 13 treatment regimens were involved and tested in 36,001 patients. Using artemether-lumefantrine (AL) as the common comparator for the entire network, 12 relative treatment effects were estimated and indirect comparisons were obtained. Dihydroartemisinin-piperaquine (DHAP) was shown to be more effective than AL (odds ratio [OR] = 1.92; 95% CI 1.30-2.82; 19,163 patients), ASAQ (OR = 1.70; 95% CI 1.10-2.64; 14,433 patients), and amodiaquine-sulfadoxine-pyrimethamine (AQSP): OR = 2.20; 95% CI 1.21-3.96; 8863 patients. Artesunate-amodiaquine (ASAQ) was comparable to AL (OR = 1.11; 95% CI 0.84-1.45; 21,235 patients). No significant difference was found between artesunate and mefloquine (ASMQ) and AL (OR = 1.20; 95% CI = 0.52-2.8; 13,824 participants). According to treatment ranking, among the WHO-recommended ACT medicines, DHAP was shown to be the most efficacious. CONCLUSIONS: Based on the available evidence, this study demonstrated the superiority of DHAP among currently recommended artemisinin-based combinations. The application of the methods described here may be helpful to gain better understanding of treatment efficacy and improve future decisions. However, more data are needed to allow robust conclusions about the results in comparison with novel drugs. Further surveillance of the efficacy of anti-malarial drugs and clinical trials are needed to closely follow the evolution of the epidemiology of drug-resistant malaria in Africa.


Subject(s)
Antimalarials/therapeutic use , Malaria/drug therapy , Network Meta-Analysis , Africa South of the Sahara , Bayes Theorem , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Models, Theoretical , Randomized Controlled Trials as Topic , Treatment Outcome
17.
Am J Trop Med Hyg ; 97(1): 222-224, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28719312

ABSTRACT

Artemisinin-resistant malaria has not been reported from Africa, but resistance can possibly spread from Asia or arise independently in Africa. The emergence of artemisinin resistance in Africa can be monitored by molecular assay of Kelch 13 (K13) propeller sequences. A total of 251 archived DNA samples of Plasmodium falciparum isolates collected in 2002, 2003, and 2006 in Yaounde, Cameroon, and 47 samples collected in 2006 and 2013 in Abidjan, Côte d'Ivoire, were analyzed for K13-propeller sequence polymorphism. Only one isolate carried a mutant K13-propeller allele (E602D). None of the isolates carried the key mutant alleles (Y493H, R539T, I543T, and C580Y) associated with artemisinin resistance in Cambodia. The presence of the mutant allele was not correlated with in vitro response to dihydroartemisinin determined by the classical hypoxanthine incorporation assay. There was no evidence of K13 mutations associated with artemisinin resistance before and soon after the introduction of artemisinin-based combination therapies in Cameroon and Côte d'Ivoire.


Subject(s)
Artemisinins/therapeutic use , Gene Expression Regulation/drug effects , Malaria, Falciparum/parasitology , Molecular Epidemiology , Plasmodium falciparum/genetics , Protozoan Proteins/metabolism , Antimalarials/therapeutic use , Cameroon/epidemiology , Cote d'Ivoire/epidemiology , Humans , Malaria, Falciparum/drug therapy , Protozoan Proteins/genetics , Time Factors
18.
Malar J ; 16(1): 130, 2017 03 27.
Article in English | MEDLINE | ID: mdl-28347314

ABSTRACT

BACKGROUND: Chloroquine had been used extensively during the last five decades in Cameroon. Its decreasing clinical effectiveness, supported by high proportions of clinical isolates carrying the mutant pfcrt haplotype (CVIET), led the health authorities to resort to amodiaquine monotherapy in 2002 and artemisinin-based combination therapy (ACT) in 2004 (artesunate-amodiaquine, with artemether-lumefantrine as an alternative since 2006) as the first-line treatment of uncomplicated malaria. The aim of the present study was to investigate whether the withdrawal of chloroquine was associated with a reduction in pfcrt mutant parasite population and reemergence of chloroquine-sensitive parasites in southeastern Cameroon between 2003 and 2012. METHODS: The frequency of pfcrt haplotypes at positions 72-76 in Plasmodium falciparum isolates collected from individuals in 2003 and 2012 in southeastern Cameroon was determined by sequence specific oligonucleotide probes-enzyme linked immunosorbent assay (SSOP-ELISA). RESULTS: The proportions of parasites carrying the mutant haplotype CVIET and the wild-type CVMNK were 53.0 and 28.0% in 2003, respectively. The proportion of the mutant haplotype in samples collected 9 years later decreased to 25.3% whereas the proportion of parasites carrying the wild-type CVMNK haplotype was 53.7%. CONCLUSIONS: Even though the proportion of chloroquine-sensitive parasites seems to be increasing in southeastern Cameroon, a reintroduction of chloroquine cannot be recommended at present in Cameroon. The current national anti-malarial drug policy should be implemented and reinforced to combat drug-resistant malaria.


Subject(s)
Antimalarials/pharmacology , Chloroquine/pharmacology , Drug Resistance/genetics , Genotype , Malaria, Falciparum/parasitology , Membrane Transport Proteins/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Cameroon , Child, Preschool , Female , Humans , Infant , Malaria, Falciparum/drug therapy , Male , Membrane Transport Proteins/metabolism , Plasmodium falciparum/drug effects , Protozoan Proteins/metabolism
19.
Malar J ; 15: 337, 2016 06 29.
Article in English | MEDLINE | ID: mdl-27357958

ABSTRACT

BACKGROUND: Plasmodium falciparum infection can lead to several clinical manifestations ranging from asymptomatic infections (AM) and uncomplicated malaria (UM) to potentially fatal severe malaria (SM), including cerebral malaria (CM). Factors implicated in the progression towards severe disease are not fully understood. METHODS: In the present study, an enzyme-linked immunosorbent assay (ELISA) method was used to investigate the plasma content of several biomarkers of the immune response, namely Neopterin, sCD163, suPAR, Pentraxin 3 (PTX3), sCD14, Fractalkine (CX3CL1), sTREM-1 and MIG (CXCL9), in patients with distinct clinical manifestations of malaria. The goal of this study was to determine the relative involvement of these inflammatory mediators in the pathogenesis of malaria and test their relevance as biomarkers of disease severity. RESULTS: ROC curve analysis show that children with AM were characterized by high levels of Fractalkine and sCD163 whereas children with UM were distinguishable by the presence of PTX3 in their plasma. Furthermore, principal component analysis indicated that the combination of Fractalkine, MIG, and Neopterin was the best predictor of AM condition, while suPAR, PTX3 and sTREM-1 combination was the best indicator of UM when compared to AM. The association of Neopterin, suPAR and Fractalkine was strongly predictive of SM or CM compared to UM. CONCLUSIONS: The results indicate that the simultaneous evaluation of these bioactive molecules as quantifiable blood parameters may be helpful to get a better insight into the clinical syndromes in children with malaria.


Subject(s)
Biological Factors/blood , Biomarkers/blood , Malaria/diagnosis , Malaria/pathology , Plasma/chemistry , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Female , Humans , Infant , Male
20.
Malar J ; 15: 78, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26862036

ABSTRACT

BACKGROUND: HLA-G, a non-classical HLA class I antigen, is of crucial interest during pregnancy by inhibiting maternal immune response. Its role during infections is discussed, and it has been described that high levels of soluble HLA-G during childhood increase the risk of malaria. To explore more precisely interactions between soluble HLA-G and malaria, latent class analysis was used to test whether distinct sub-populations of children, each with distinctive soluble HLA-G evolutions may suggest the existence of groups presenting variable malaria susceptibility. METHOD: A study was conducted in Benin from 2010 to 2013 and 165 children were followed from birth to 12 months. Evolution of soluble HLA-G was studied by the latent class method. RESULTS: Three groups of children were identified: one with consistently low levels of soluble HLA-G during follow-up, a second with very high levels and a last intermediate group. In all groups, low birth weight, high number of malaria infections and high exposure to malaria transmission were associated with high level of soluble HLA-G. Placental malaria was not. Presence of soluble HLA-G in cord blood increased the probability of belonging to the highest trajectory. CONCLUSION: These results, together with previous ones, confirm the important role of HLA-G in the individual susceptibility to malaria. Assaying soluble HLA-G at birth could be a good indicator of newborns more fragile and at risk of infections during childhood.


Subject(s)
HLA-G Antigens/metabolism , Malaria/metabolism , Adolescent , Adult , Disease Susceptibility/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Pregnancy , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...