Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Soft comput ; 27(6): 3307-3326, 2023.
Article in English | MEDLINE | ID: mdl-33994846

ABSTRACT

The COVID19 pandemic globally and significantly has affected the life and health of many communities. The early detection of infected patients is effective in fighting COVID19. Using radiology (X-Ray) images is, perhaps, the fastest way to diagnose the patients. Thereby, deep Convolutional Neural Networks (CNNs) can be considered as applicable tools to diagnose COVID19 positive cases. Due to the complicated architecture of a deep CNN, its real-time training and testing become a challenging problem. This paper proposes using the Extreme Learning Machine (ELM) instead of the last fully connected layer to address this deficiency. However, the parameters' stochastic tuning of ELM's supervised section causes the final model unreliability. Therefore, to cope with this problem and maintain network reliability, the sine-cosine algorithm was utilized to tune the ELM's parameters. The designed network is then benchmarked on the COVID-Xray-5k dataset, and the results are verified by a comparative study with canonical deep CNN, ELM optimized by cuckoo search, ELM optimized by genetic algorithm, and ELM optimized by whale optimization algorithm. The proposed approach outperforms comparative benchmarks with a final accuracy of 98.83% on the COVID-Xray-5k dataset, leading to a relative error reduction of 2.33% compared to a canonical deep CNN. Even more critical, the designed network's training time is only 0.9421 ms and the overall detection test time for 3100 images is 2.721 s.

3.
Multimed Tools Appl ; 81(20): 28779-28798, 2022.
Article in English | MEDLINE | ID: mdl-35382107

ABSTRACT

Since early 2020, Coronavirus Disease 2019 (COVID-19) has spread widely around the world. COVID-19 infects the lungs, leading to breathing difficulties. Early detection of COVID-19 is important for the prevention and treatment of pandemic. Numerous sources of medical images (e.g., Chest X-Rays (CXR), Computed Tomography (CT), and Magnetic Resonance Imaging (MRI)) are regarded as a desirable technique for diagnosing COVID-19 cases. Medical images of coronavirus patients show that the lungs are filled with sticky mucus that prevents them from inhaling. Today, Artificial Intelligence (AI) based algorithms have made a significant shift in the computer aided diagnosis due to their effective feature extraction capabilities. In this survey, a complete and systematic review of the application of Machine Learning (ML) methods for the detection of COVID-19 is presented, focused on works that used medical images. We aimed to evaluate various ML-based techniques in detecting COVID-19 using medical imaging. A total of 26 papers were extracted from ACM, ScienceDirect, Springerlink, Tech Science Press, and IEEExplore. Five different ML categories to review these mechanisms are considered, which are supervised learning-based, deep learning-based, active learning-based, transfer learning-based, and evolutionary learning-based mechanisms. A number of articles are investigated in each group. Also, some directions for further research are discussed to improve the detection of COVID-19 using ML techniques in the future. In most articles, deep learning is used as the ML method. Also, most of the researchers used CXR images to diagnose COVID-19. Most articles reported accuracy of the models to evaluate model performance. The accuracy of the studied models ranged from 0.84 to 0.99. The studies demonstrated the current status of AI techniques in using AI potentials in the fight against COVID-19.

4.
Biomed Signal Process Control ; 68: 102764, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33995562

ABSTRACT

Real-time detection of COVID-19 using radiological images has gained priority due to the increasing demand for fast diagnosis of COVID-19 cases. This paper introduces a novel two-phase approach for classifying chest X-ray images. Deep Learning (DL) methods fail to cover these aspects since training and fine-tuning the model's parameters consume much time. In this approach, the first phase comes to train a deep CNN working as a feature extractor, and the second phase comes to use Extreme Learning Machines (ELMs) for real-time detection. The main drawback of ELMs is to meet the need of a large number of hidden-layer nodes to gain a reliable and accurate detector in applying image processing since the detective performance remarkably depends on the setting of initial weights and biases. Therefore, this paper uses Chimp Optimization Algorithm (ChOA) to improve results and increase the reliability of the network while maintaining real-time capability. The designed detector is to be benchmarked on the COVID-Xray-5k and COVIDetectioNet datasets, and the results are verified by comparing it with the classic DCNN, Genetic Algorithm optimized ELM (GA-ELM), Cuckoo Search optimized ELM (CS-ELM), and Whale Optimization Algorithm optimized ELM (WOA-ELM). The proposed approach outperforms other comparative benchmarks with 98.25 % and 99.11 % as ultimate accuracy on the COVID-Xray-5k and COVIDetectioNet datasets, respectively, and it led relative error to reduce as the amount of 1.75 % and 1.01 % as compared to a convolutional CNN. More importantly, the time needed for training deep ChOA-ELM is only 0.9474 milliseconds, and the overall testing time for 3100 images is 2.937 s.

SELECTION OF CITATIONS
SEARCH DETAIL
...