Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
2.
Nat Commun ; 15(1): 2996, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38584165

ABSTRACT

Desalination could solve the grand challenge of water scarcity, but materials-based and conventional thermal desalination methods generally suffer from scaling, fouling and materials degradation. Here, we propose and assess thermodiffusive desalination (TDD), a method that operates entirely in the liquid phase and notably excludes evaporation, freezing, membranes, or ion-adsorbing materials. Thermodiffusion is the migration of species under a temperature gradient and can be driven by thermal energy ubiquitous in the environment. Experimentally, a 450 ppm concentration drop was achieved by thermodiffusive separation when passing a NaCl/H2O solution through a single channel. This was further increased through re-circulation as a proof of concept for TDD. We also demonstrate via molecular dynamics and experiments that TDD in multi-component seawater is more amenable than in binary NaCl/H2O solutions. Numerically, we show that a scalable cascaded channel structure can further amplify thermodiffusive separation, achieving a concentration drop of 25000 ppm with a recovery rate of 10%. The minimum electric power consumption in this setup can be as low as 3 Whe m-3, which is only 1% of the theoretical minimum energy for desalination. TDD has potential in areas with abundant thermal energy but limited electrical power resources and can contribute to alleviating global freshwater scarcity.

3.
Adv Sci (Weinh) ; 9(23): e2201415, 2022 08.
Article in English | MEDLINE | ID: mdl-35657076

ABSTRACT

The spread of viral and bacterial pathogens mediated by contact with surfaces is a leading cause of infection worldwide. COVID-19 and the continuous rise of deaths associated with antibiotic-resistant bacteria highlight the need to impede surface-mediated transmission. A sprayable coating with an intrinsic ability to resist the uptake of bacteria and viruses from surfaces and droplets, such as those generated by sneezing or coughing, is reported. The coating also provides an effective microbicidal functionality against bacteria, providing a dual barrier against pathogen uptake and transmission. This antimicrobial functionality is fully preserved following scratching and other induced damage to its surface or 9 days of submersion in a highly concentrated suspension of bacteria. The coatings also register an 11-fold decrease in viral contamination compared to the noncoated surfaces.


Subject(s)
Anti-Infective Agents , COVID-19 , Viruses , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacteria , Humans
4.
Small ; 17(11): e2006309, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33620772

ABSTRACT

Since the Ti3 C2 was discovered in 2011, the family of MXenes has attracted much attention. MXenes offer great potential in the tuning of many fundamental properties by the synthesis of new structures. The synthesis methods of MXene mainly require steps including immersing a MAX phase in hydrofluoric acid (HF) and processing at high temperatures. However, the HF may be hard to acquire in many countries and processing at high temperatures may cause risk issues. In this article, a simple and cost-effective synthesis of Ti3 C2 Tx quantum dots (QDs) via chemical solution method that follows the long-time magnetic stirring process-initiated etching of Al atoms from commercial Ti3 AlC2 powder at room temperature is introduced. With WS2 monolayer sitting over the MXenes QD arrays, a higher level of photoluminescence (PL) enhancement is found in the heterostructure with increasing laser power at room temperature and a few novel quasi-particles species in the heterostructure at -190 °C. The observations show that the possible plasmonic behavior initiated by QD arrays and the suspension state of WS2 may coplay the roles to trigger multiple quasi-particles species. This study can be an important benchmark for the extensive understanding of quasi-particles species, and their dynamics.

5.
Adv Sci (Weinh) ; 7(24): 2002368, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33344131

ABSTRACT

The structuring of the metal-organic framework material ZIF-8 as films and membranes through the vapor-phase conversion of ZnO fractal nanoparticle networks is reported. The extrinsic porosity of the resulting materials can be tuned from 4% to 66%, and the film thickness can be controlled from 80 nm to 0.23 mm, for areas >100 cm2. Freestanding and pure metal-organic frameworks (MOF) membranes prepared this way are showcased as separators that minimize capacity fading in model Li-S batteries.

6.
ACS Nano ; 14(10): 13852-13864, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-32886499

ABSTRACT

Lithium-sulfur batteries are one of the most promising next-generation high-density energy storage systems. Despite progress, the poor electrical conductivity and cycling stability of sulfur cathodes still hinder their practical implementation. Here, we developed a facile approach for the engineering of Janus double-sided conductive/insulating microporous ion-sieving membranes that significantly enhance recharge efficiency and long-term stability of Li-S batteries. Our membrane consists of an insulating Li-anode side and an electrically conductive S-cathode side. The insulating side consists of a standard polypropylene separator, while the conductive side is made of closely packed multilayers of high-aspect-ratio MOF/graphene nanosheets having a thickness of few nanometers and a specific surface area of 996 m2 g-1 (MOF, metal-organic framework). Our models and experiments reveal that this electrically conductive microporous nanosheet architecture enables the reuse of polysulfide trapped in the membrane and decreases the polysulfide flux and concentration on the anode side by a factor of 250× over recent microporous membranes made of granular MOFs and standard battery separators. Notably, Li-S batteries using our Janus microporous membranes achieve an outstanding rate capability and long-term stability with 75.3% capacity retention over 1700 cycles. We demonstrate the broad applicability of our high-aspect-ratio MOF/graphene nanosheet preparation strategy by the synthesis of a diverse range of MOFs, including ZIF-67, ZIF-8, HKUST-1, NiFe-BTC, and Ni-NDC, providing a flexible approach for the design of Janus microporous membranes and electrically conductive microporous building blocks for energy storage and various other electrochemical applications.

7.
Nano Lett ; 20(5): 3970-3977, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32343590

ABSTRACT

Epsilon-near-zero (ENZ) materials offer unique properties for applications including optical clocking, nonlinear optics, and telecommunication. To date, the fabrication of ENZ materials at visible wavelengths relies mostly on the use of periodic structures, providing some manufacturing and material challenges. Here, we present the engineering of nonperiodic sodium tungsten bronzes (NaxWO3) metamaterials featuring ENZ properties in the visible spectrum. We showcase their use as efficient optical sensors, demonstrating a nonresonant sensing mechanism based on refractive index matching. Our optimized ENZ metamaterials display an unconventional blue-shift of the transmittance maximum to increasing refractive index of the surrounding environment, achieving sensitivity as high as 150 nm/RIU. Our theoretical and experimental investigations provide first insights on this sensing mechanism, establishing guidelines for the future engineering and implementation of efficient ENZ sensors. The unique optoelectronic properties demonstrated by this class of tunable NaxWO3 materials bear potential for various applications ranging from light-harvesting to optical photodetectors.

8.
Angew Chem Int Ed Engl ; 59(18): 7049-7056, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32167650

ABSTRACT

The most pressing challenges for light-driven hydrogel actuators include reliance on UV light, slow response, poor mechanical properties, and limited functionalities. Now, a supramolecular design strategy is used to address these issues. Key is the use of a benzylimine-functionalized anthracene group, which red-shifts the absorption into the visible region and also stabilizes the supramolecular network through π-π interactions. Acid-ether hydrogen bonds are incorporated for energy dissipation under mechanical deformation and maintaining hydrophilicity of the network. This double-crosslinked supramolecular hydrogel developed via a simple synthesis exhibits a unique combination of high strength, rapid self-healing, and fast visible-light-driven shape morphing both in the wet and dry state. As all of the interactions are dynamic, the design enables the structures to be recycled and reprogrammed into different 3D objects.

9.
ACS Appl Mater Interfaces ; 12(8): 9589-9599, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32019296

ABSTRACT

Transparent conductive oxides (TCOs) are highly desirable for numerous applications ranging from photovoltaics to light-emitting diodes and photoelectrochemical devices. Despite progress, it remains challenging to fabricate porous TCOs (pTCOs) that may provide, for instance, a hierarchical nanostructured morphology for the separation of photoexcited hole/electron couples. Here, we present a facile process for the fabrication of porous architectures of aluminum-doped zinc oxide (AZO), a low-cost and earth-abundant transparent conductive oxide. Three-dimensional nanostructured films of AZO with tunable porosities from 10 to 98% were rapidly self-assembled from flame-made nanoparticle aerosols. Successful Al doping was confirmed by X-ray photoemission spectroscopy, high-resolution transmission electron microscopy, elemental mapping, X-ray diffraction, and Fourier transform infrared spectroscopy. An optimal Al-doping level of 1% was found to induce the highest material conductivity, while a higher amount led to partial segregation and formation of aluminum oxide domains. A controllable semiconducting to conducting behavior with a resistivity change of more than 4 orders of magnitudes from about 3 × 102 to 9.4 × 106 Ω cm was observed by increasing the AZO film porosity from 10 to 98%. While the denser AZO morphologies may find immediate application as transparent electrodes, we demonstrate that the ultraporous semiconducting layers have potential as a light-driven gas sensor, showing a high response of 1.92-1 ppm of ethanol at room temperature. We believe that these tunable porous transparent conductive oxides and their scalable fabrication method may provide a highly performing material for future optoelectronic devices.

10.
Nano Lett ; 19(7): 4391-4399, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31246030

ABSTRACT

The lithium-sulfur (Li-S) system is a promising material for the next-generation of high energy density batteries with application extending from electrical vehicles to portable devices and aeronautics. Despite progress, the energy density of current Li-S technologies is still below that of conventional intercalation-type cathode materials due to limited stability and utilization efficiency at high sulfur loading. Here, we present a conducting polymer hydrogel integrated highly performing free-standing three-dimensional (3D) monolithic electrode architecture for Li-S batteries with superior electrochemical stability and energy density. The electrode layout consists of a highly conductive three-dimensional network of N,P codoped carbon with well-dispersed metal-organic framework nanodomains of ZIF-67 and HKUST-1. The hierarchical monolithic 3D carbon networks provide an excellent environment for charge and electrolyte transport as well as mechanical and chemical stability. The electrically integrated MOF nanodomains significantly enhance the sulfur loading and retention capabilities by inhibiting the release of lithium polysulfide specificities as well as improving the charge transfer efficiency at the electrolyte interface. Our optimal 3D carbon-HKUST-1 electrode architecture achieves a very high areal capacity of >16 mAh cm-2 and volumetric capacity (CV) of 1230.8 mAh cm-3 with capacity retention of 82% at 0.2C for over 300 cycles, providing an attractive candidate material for future high-energy density Li-S batteries.

11.
ACS Biomater Sci Eng ; 4(4): 1324-1336, 2018 Apr 09.
Article in English | MEDLINE | ID: mdl-33418663

ABSTRACT

A handful of work focused on improving the intrinsic low mechanical properties of hydroxyapatite (HA) by various reinforcing agents. However, the big challenge regarding improving mechanical properties is maintaining bioactivity. To address this issue, we report fabrication of apatite-based composites by incorporation of alumina nanoparticles (n-Al2O3). Although numerous studies have used micron or submicron alumina for reinforcing hydroxyapatite, only few reports are available about the use of n-Al2O3. In this study, spark plasma sintering (SPS) method was utilized to develop HA-nAl2O3 dense bodies. Compared to the conventional sintering, decomposition of HA and formation of calcium aluminates phases are restricted using SPS. Moreover, n-Al2O3 acts as a bioactive agent while its conventional form is an inert bioceramics. The addition of n-Al2O3 resulted in 40% improvement in hardness along with a 110% increase in fracture toughness, while attaining nearly full dense bodies. The in vitro characterization of nanocomposite demonstrated improved bone-specific cell function markers as evidenced by cell attachment and proliferation, alkaline phosphatase activity, calcium and collagen detection and nitric oxide production. Specifically, gene expression analysis demonstrated that introduction of n-Al2O3 in HA matrix resulted in accelerated osteogenic differentiation of osteoblast and mesenchymal stem cells, as expression of Runx-2 and OSP showed 2.5 and 19.6 fold increase after 2 weeks (p < 0.05). Moreover, protein adsorption analysis showed enhanced adsorption of plasma proteins to HA-nAl2O3 sample compared to HA. These findings suggest that HA-nAl2O3 could be a prospective candidate for orthopedic applications due to its improved mechanical and osteogenic properties.

12.
Expert Opin Drug Deliv ; 12(7): 1071-87, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25601356

ABSTRACT

INTRODUCTION: It is 23 years since carbon allotrope known as carbon nanotubes (CNT) was discovered by Iijima, who described them as "rolled graphite sheets inserted into each other". Since then, CNTs have been studied in nanoelectronic devices. However, CNTs also possess the versatility to act as drug- and gene-delivery vehicles. AREAS COVERED: This review covers the synthesis, purification and functionalization of CNTs. Arc discharge, laser ablation and chemical vapor deposition are the principle synthesis methods. Non-covalent functionalization relies on attachment of biomolecules by coating the CNT with surfactants, synthetic polymers and biopolymers. Covalent functionalization often involves the initial introduction of carboxylic acids or amine groups, diazonium addition, 1,3-dipolar cycloaddition or reductive alkylation. The aim is to produce functional groups to attach the active cargo. EXPERT OPINION: In this review, the feasibility of CNT being used as a drug-delivery vehicle is explored. The molecular composition of CNT is extremely hydrophobic and highly aggregation-prone. Therefore, most of the efforts towards drug delivery has centered on chemical functionalization, which is usually divided in two categories; non-covalent and covalent. The biomedical applications of CNT are growing apace, and new drug-delivery technologies play a major role in these efforts.


Subject(s)
Drug Delivery Systems , Nanotubes, Carbon , Pharmaceutical Preparations/administration & dosage , Gene Transfer Techniques , Genetic Therapy/methods , Humans , Hydrophobic and Hydrophilic Interactions
13.
Expert Opin Drug Deliv ; 12(7): 1089-105, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25613837

ABSTRACT

INTRODUCTION: Carbon nanotubes (CNT) have recently been studied as novel and versatile drug and gene delivery vehicles. When CNT are suitably functionalized, they can interact with various cell types and are taken up by endocytosis. AREAS COVERED: Anti-cancer drugs cisplatin and doxorubicin have been delivered by CNT, as well as methotrexate, taxol and gemcitabine. The delivery of the antifungal compound amphotericin B and the oral administration of erythropoietin have both been assisted using CNT. Frequently, targeting moieties such as folic acid, epidermal growth factor or various antibodies are attached to the CNT-drug nanovehicle. Different kinds of functionalization (e.g., polycations) have been used to allow CNT to act as gene delivery vectors. Plasmid DNA, small interfering RNA and micro-RNA have all been delivered by CNT vehicles. Significant concerns are raised about the nanotoxicology of the CNT and their potentially damaging effects on the environment. EXPERT OPINION: CNT-mediated drug delivery has been studied for over a decade, and both in vitro and in vivo studies have been reported. The future success of CNTs as vectors in vivo and in clinical application will depend on achievement of efficacious therapy with minimal adverse effects and avoidance of possible toxic and environmentally damaging effects.


Subject(s)
Drug Delivery Systems , Gene Transfer Techniques , Nanotubes, Carbon , Animals , Antineoplastic Agents/administration & dosage , Genetic Therapy/methods , Genetic Vectors , Humans , Plasmids/administration & dosage , RNA, Small Interfering/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...