Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Biotechnol ; 32(14): 2145-2152, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37860731

ABSTRACT

Mentha spicata essential oil (EO) is isolated from the aerial parts of Mentha spicata L. with pronounced antibacterial effects as food preservative in food industry. Nevertheless, its application in the clinical industry and food is significantly restricted by its poor water solubility and physicochemical instability. Glycerosomes of this EO were prepared to enhance its anti-microbial stability. The EO was encapsulated in the glycerosomes and characterized for its physical properties. The optimized EO-loaded glycerosomes displayed entrapment efficiency of 93.2 ± 7.5%, release efficiency of 75.4 ± 6.1%, the particle size of 276 nm, and zeta potential of - 30.4 mV. Scanning electron microscopy (SEM) image showed spherical morphology of the glycerosomes. EO release from optimized formulation of glycerosomes best fitted with a first-order kinetic model. Compared with free EO, EO-loaded glycerosomes showed better storage stability. The results indicated that the incorporation of EO in glycerosomes possessed sustained release properties and significantly enhanced antibacterial effects in storage.

2.
Osteoporos Int ; 34(2): 255-267, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36241849

ABSTRACT

Osteoporosis is an increasingly common condition that causes low bone density, porous bone, and increased fracture risk. Treatments for osteoporosis are divided into two categories: (a) antiresorptive and (b) anabolic. To decrease side effects of drug and dosage level variations caused by several consecutive administrations, various drug delivery systems have been proposed. Among them, scaffolds are one of the drug delivery systems that led to drug impart with high loading and suitable efficiency to specific sites which retain active agents at acceptable therapeutic levels. The purpose of this review was to explain the role of scaffolds in targeted drug delivery to bone tissue for the treatment of osteoporosis.


Subject(s)
Anabolic Agents , Bone Density Conservation Agents , Fractures, Bone , Osteoporosis , Humans , Biocompatible Materials/therapeutic use , Osteoporosis/drug therapy , Drug Delivery Systems , Fractures, Bone/drug therapy , Bone and Bones , Bone Density Conservation Agents/therapeutic use
3.
Int J Biol Macromol ; 220: 1605-1618, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36116595

ABSTRACT

This study was meant to describe a Poloxamer hydrogel combining Chitosan-N-acetyl-L-cysteine (CNAC) nanoparticles to increase loading and sustained intravitreal administration of Avastin macromolecule. To increase the drug's efficacy and reduce the interfacial fluid pressure in a formulation, dexamethasone was used. To do so, CNAC was synthesized. Then, Avastin- loaded CNAC nanoparticles were prepared and optimized. The resulting hydrogel's sol-gel transition time and viscosity were determined using poloxamer and hydroxypropylmethylcellulose (HPMC). In vitro and in vivo investigations of Avastin-loaded CNAC nanoparticles and hydrogel comprising dexamethasone/Avastin-loaded CNAC nanoparticles were determined. In vitro, the drug release profile of optimized hydrogel containing Avastin-loaded CNAC nanoparticles was sustained and controlled over 256 h. The obtained results point to poloxamer/HPMC (18 %/0.5 %) as the best formulations for this hydrogel to develop a sol-gel transition. About 97 % of dexamethasone was released from the hydrogel within 18 h. In vivo results indicated that the optimized formulation compared with free Avastin could improve Diabetic retinopathy (DR). Consequently, we infer that this new drug delivery method may enhance Avastin intravitreal administration, lowering the frequency, danger, and expense of heavy intravitreal injections and resulting in improved treatment of posterior eye segment neovascularization and concomitant vitreoretinal disorders.


Subject(s)
Chitosan , Nanoparticles , Acetylcysteine , Bevacizumab/pharmacology , Chitosan/chemistry , Dexamethasone/pharmacology , Hydrogels/chemistry , Hypromellose Derivatives , Nanoparticles/chemistry , Poloxamer/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...