Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 5474, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37673883

ABSTRACT

Streptococcus pyogenes Cas9 (SpCas9) and derived enzymes are widely used as genome editors, but their promiscuous nuclease activity often induces undesired mutations and chromosomal rearrangements. Several strategies for mapping off-target effects have emerged, but they suffer from limited sensitivity. To increase the detection sensitivity, we develop an off-target assessment workflow that uses Duplex Sequencing. The strategy increases sensitivity by one order of magnitude, identifying previously unknown SpCas9's off-target mutations in the humanized PCSK9 mouse model. To reduce off-target risks, we perform a bioinformatic search and identify a high-fidelity Cas9 variant of the II-B subfamily from Parasutterella secunda (PsCas9). PsCas9 shows improved specificity as compared to SpCas9 across multiple tested sites, both in vitro and in vivo, including the PCSK9 site. In the future, while PsCas9 will offer an alternative to SpCas9 for research and clinical use, the Duplex Sequencing workflow will enable a more sensitive assessment of Cas9 editing outcomes.


Subject(s)
Proprotein Convertase 9 , Translocation, Genetic , Animals , Mice , Proprotein Convertase 9/genetics , CRISPR-Cas Systems/genetics , Mutation , Endonucleases/genetics , Streptococcus pyogenes/genetics
2.
Nat Commun ; 14(1): 4761, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37580318

ABSTRACT

Genome editing, specifically CRISPR/Cas9 technology, has revolutionized biomedical research and offers potential cures for genetic diseases. Despite rapid progress, low efficiency of targeted DNA integration and generation of unintended mutations represent major limitations for genome editing applications caused by the interplay with DNA double-strand break repair pathways. To address this, we conduct a large-scale compound library screen to identify targets for enhancing targeted genome insertions. Our study reveals DNA-dependent protein kinase (DNA-PK) as the most effective target to improve CRISPR/Cas9-mediated insertions, confirming previous findings. We extensively characterize AZD7648, a selective DNA-PK inhibitor, and find it to significantly enhance precise gene editing. We further improve integration efficiency and precision by inhibiting DNA polymerase theta (PolÏ´). The combined treatment, named 2iHDR, boosts templated insertions to 80% efficiency with minimal unintended insertions and deletions. Notably, 2iHDR also reduces off-target effects of Cas9, greatly enhancing the fidelity and performance of CRISPR/Cas9 gene editing.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Protein Kinases/genetics , DNA Repair/genetics , DNA/genetics
3.
Methods Mol Biol ; 2495: 29-46, 2022.
Article in English | MEDLINE | ID: mdl-35696026

ABSTRACT

The last two decades have marked significant advancement in the genome editing field. Three generations of programmable nucleases (ZFNs, TALENs, and CRISPR-Cas system) have been adopted to introduce targeted DNA double-strand breaks (DSBs) in eukaryotic cells. DNA repair machinery of the cells has been exploited to introduce insertion and deletions (indels) at the targeted DSBs to study function of any gene-of-interest. The resulting indels were generally assumed to be "random" events produced by "error-prone" DNA repair pathways. However, recent advances in computational tools developed to study the Cas9-induced mutations have changed the consensus and implied the "non-randomness" nature of these mutations. Furthermore, CRISPR-centric tools are evolving at an unprecedented pace, for example, base- and prime-editors are the newest developments that have been added to the genome editing toolbox. Altogether, genome editing tools have revolutionized our way of conducting research in life sciences. Here, we present a concise overview of genome editing tools and describe the DNA repair pathways underlying the generation of genome editing outcome.


Subject(s)
Gene Editing , Transcription Activator-Like Effector Nucleases , CRISPR-Cas Systems/genetics , DNA Breaks, Double-Stranded , Endonucleases/genetics , Endonucleases/metabolism , Gene Editing/methods , Transcription Activator-Like Effector Nucleases/genetics , Transcription Activator-Like Effector Nucleases/metabolism
4.
Nat Commun ; 11(1): 4903, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994412

ABSTRACT

The CRISPR-Cas9 system has increased the speed and precision of genetic editing in cells and animals. However, model generation for drug development is still expensive and time-consuming, demanding more target flexibility and faster turnaround times with high reproducibility. The generation of a tightly controlled ObLiGaRe doxycycline inducible SpCas9 (ODInCas9) transgene and its use in targeted ObLiGaRe results in functional integration into both human and mouse cells culminating in the generation of the ODInCas9 mouse. Genomic editing can be performed in cells of various tissue origins without any detectable gene editing in the absence of doxycycline. Somatic in vivo editing can model non-small cell lung cancer (NSCLC) adenocarcinomas, enabling treatment studies to validate the efficacy of candidate drugs. The ODInCas9 mouse allows robust and tunable genome editing granting flexibility, speed and uniformity at less cost, leading to high throughput and practical preclinical in vivo therapeutic testing.


Subject(s)
CRISPR-Cas Systems/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Discovery/methods , Gene Editing/methods , Lung Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , CRISPR-Associated Protein 9/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Doxycycline/pharmacology , Drug Screening Assays, Antitumor/methods , Female , Gene Expression/drug effects , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/drug effects , Genetic Vectors/genetics , HEK293 Cells , High-Throughput Screening Assays/methods , Humans , Lung Neoplasms/genetics , Male , Mice , Mice, Transgenic , RNA, Guide, Kinetoplastida/genetics , Recombination, Genetic/drug effects , Reproducibility of Results , Transcriptional Activation/drug effects , Transfection/methods , Transgenes/genetics
5.
BMC Biol ; 17(1): 4, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30646909

ABSTRACT

BACKGROUND: Plasma concentration of low-density lipoprotein (LDL) cholesterol is a well-established risk factor for cardiovascular disease. Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which regulates cholesterol homeostasis, has recently emerged as an approach to reduce cholesterol levels. The development of humanized animal models is an important step to validate and study human drug targets, and use of genome and base editing has been proposed as a mean to target disease alleles. RESULTS: To address the lack of validated models to test the safety and efficacy of techniques to target human PCSK9, we generated a liver-specific human PCSK9 knock-in mouse model (hPCSK9-KI). We showed that plasma concentrations of total cholesterol were higher in hPCSK9-KI than in wildtype mice and increased with age. Treatment with evolocumab, a monoclonal antibody that targets human PCSK9, reduced cholesterol levels in hPCSK9-KI but not in wildtype mice, showing that the hypercholesterolemic phenotype was driven by overexpression of human PCSK9. CRISPR-Cas9-mediated genome editing of human PCSK9 reduced plasma levels of human and not mouse PCSK9, and in parallel reduced plasma concentrations of total cholesterol; genome editing of mouse Pcsk9 did not reduce cholesterol levels. Base editing using a guide RNA that targeted human and mouse PCSK9 reduced plasma levels of human and mouse PCSK9 and total cholesterol. In our mouse model, base editing was more precise than genome editing, and no off-target editing nor chromosomal translocations were identified. CONCLUSIONS: Here, we describe a humanized mouse model with liver-specific expression of human PCSK9 and a human-like hypercholesterolemia phenotype, and demonstrate that this mouse can be used to evaluate antibody and gene editing-based (genome and base editing) therapies to modulate the expression of human PCSK9 and reduce cholesterol levels. We predict that this mouse model will be used in the future to understand the efficacy and safety of novel therapeutic approaches for hypercholesterolemia.


Subject(s)
Cholesterol/blood , Hypercholesterolemia/genetics , Liver/metabolism , Proprotein Convertase 9/genetics , Animals , Disease Models, Animal , Gene Editing , Genome , Humans , Hypercholesterolemia/metabolism , Mice , Mice, Transgenic
6.
Nucleic Acids Res ; 46(16): 8417-8434, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30032200

ABSTRACT

The mutation patterns at Cas9 targeted sites contain unique information regarding the nuclease activity and repair mechanisms in mammalian cells. However, analytical framework for extracting such information are lacking. Here, we present a novel computational platform called Rational InDel Meta-Analysis (RIMA) that enables an in-depth comprehensive analysis of Cas9-induced genetic alterations, especially InDels mutations. RIMA can be used to quantitate the contribution of classical microhomology-mediated end joining (c-MMEJ) pathway in the formation of mutations at Cas9 target sites. We used RIMA to compare mutational signatures at 15 independent Cas9 target sites in human A549 wildtype and A549-POLQ knockout cells to elucidate the role of DNA polymerase θ in c-MMEJ. Moreover, the single nucleotide insertions at the Cas9 target sites represent duplications of preceding nucleotides, suggesting that the flexibility of the Cas9 nuclease domains results in both blunt- and staggered-end cuts. Thymine at the fourth nucleotide before protospacer adjacent motif (PAM) results in a two-fold higher occurrence of single nucleotide InDels compared to guanine at the same position. This study provides a novel approach for the characterization of the Cas9 nucleases with improved accuracy in predicting genome editing outcomes and a potential strategy for homology-independent targeted genomic integration.


Subject(s)
CRISPR-Associated Protein 9/metabolism , DNA End-Joining Repair , INDEL Mutation , Software , A549 Cells , Algorithms , Base Sequence , Cell Line , DNA-Directed DNA Polymerase/deficiency , DNA-Directed DNA Polymerase/metabolism , Datasets as Topic , Francisella/enzymology , Humans , Nucleotide Motifs , Polymorphism, Single Nucleotide , Recombinant Proteins/metabolism , Streptococcus pyogenes/enzymology , Substrate Specificity , DNA Polymerase theta
7.
Oncotarget ; 9(30): 21444-21458, 2018 Apr 20.
Article in English | MEDLINE | ID: mdl-29765551

ABSTRACT

The PI3Kα signaling pathway is frequently hyper-activated in breast cancer (BrCa), as a result of mutations/amplifications in oncogenes (e.g. HER2), decreased function in tumor suppressors (e.g. PTEN) or activating mutations in key components of the pathway. In particular, activating mutations of PIK3CA (~45%) are frequently found in luminal A BrCa samples. Genomic studies have uncovered inactivating mutations in MAP3K1 (13-20%) and MAP2K4 (~8%), two upstream kinases of the JNK apoptotic pathway in luminal A BrCa samples. Further, simultaneous mutation of PIK3CA and MAP3K1 are found in ~11% of mutant PIK3CA tumors. How these two alterations may cooperate to elicit tumorigenesis and impact the sensitivity to PI3K and AKT inhibitors is currently unknown. Using CRISPR gene editing we have genetically disrupted MAP3K1 expression in mutant PIK3CA cell lines to specifically create in vitro models reflecting the mutational status of PIK3CA and MAP3K1 in BrCa patients. MAP3K1 deficient cell lines exhibited ~2.4-fold increased proliferation rate and decreased sensitivity to PI3Kα/δ(AZD8835) and AKT (AZD5363) inhibitors (~2.61 and ~5.23-fold IC50 increases, respectively) compared with parental control cell lines. In addition, mechanistic analysis revealed that MAP3K1 disruption enhances AKT phosphorylation and downstream signaling and reduces sensitivity to AZD5363-mediated pathway inhibition. This appears to be a consequence of deficient MAP3K1-JNK signaling increasing IRS1 stability and therefore promoting IRS1 binding to p85, resulting in enhanced PI3Kα activity. Using 3D-MCF10A-PI3KαH1047R models, we found that MAP3K1 depletion increased overall acinar volume and counteracted AZD5363-mediated reduction of acinar growth due to enhanced proliferation and reduced apoptosis. Furthermore, in vivo efficacy studies revealed that MAP3K1-deficient MCF7 tumors were less sensitive to AKT inhibitor treatment, compared with parental MCF7 tumors. Our study provides mechanistic and in vivo evidence indicating a role for MAP3K1 as a tumor suppressor gene at least in the context of PIK3CA-mutant backgrounds. Further, our work predicts that MAP3K1 mutational status may be considered as a predictive biomarker for efficacy in PI3K pathway inhibitor trials.

8.
Stem Cell Res ; 29: 220-231, 2018 05.
Article in English | MEDLINE | ID: mdl-29734117

ABSTRACT

Recent studies have reported significant advances in the differentiation of human pluripotent stem cells to clinically relevant cell types such as the insulin producing beta-like cells and motor neurons. However, many of the current differentiation protocols lead to heterogeneous cell cultures containing cell types other than the targeted cell fate. Genetically modified human pluripotent stem cells reporting the expression of specific genes are of great value for differentiation protocol optimization and for the purification of relevant cell populations from heterogeneous cell cultures. Here we present the generation of human induced pluripotent stem cell (iPSC) lines with a GFP reporter inserted in the endogenous NKX6.1 locus. Characterization of the reporter lines demonstrated faithful GFP labelling of NKX6.1 expression during pancreas and motor neuron differentiation. Cell sorting and gene expression profiling by RNA sequencing revealed that NKX6.1-positive cells from pancreatic differentiations closely resemble human beta cells. Furthermore, functional characterization of the isolated cells demonstrated that glucose-stimulated insulin secretion is mainly confined to the NKX6.1-positive cells. We expect that the NKX6.1-GFP iPSC lines and the results presented here will contribute to the further refinement of differentiation protocols and characterization of hPSC-derived beta cells and motor neurons for disease modelling and cell replacement therapies.


Subject(s)
Cell Differentiation , Genes, Reporter , Genetic Loci , Green Fluorescent Proteins , Homeodomain Proteins/genetics , Induced Pluripotent Stem Cells/metabolism , Insulin-Secreting Cells/metabolism , Motor Neurons/metabolism , Cell Line , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Insulin-Secreting Cells/cytology , Motor Neurons/cytology
9.
EBioMedicine ; 29: 104-111, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29500128

ABSTRACT

α1-antitrypsin (AAT) is a circulating serine protease inhibitor secreted from the liver and important in preventing proteolytic neutrophil elastase associated tissue damage, primarily in lungs. In humans, AAT is encoded by the SERPINA1 (hSERPINA1) gene in which a point mutation (commonly referred to as PiZ) causes aggregation of the miss-folded protein in hepatocytes resulting in subsequent liver damage. In an attempt to rescue the pathologic liver phenotype of a mouse model of human AAT deficiency (AATD), we used adenovirus to deliver Cas9 and a guide-RNA (gRNA) molecule targeting hSERPINA1. Our single dose therapeutic gene editing approach completely reverted the phenotype associated with the PiZ mutation, including circulating transaminase and human AAT (hAAT) protein levels, liver fibrosis and protein aggregation. Furthermore, liver histology was significantly improved regarding inflammation and overall morphology in hSERPINA1 gene edited PiZ mice. Genomic analysis confirmed significant disruption to the hSERPINA1 transgene resulting in a reduction of hAAT protein levels and quantitative mRNA analysis showed a reduction in fibrosis and hepatocyte proliferation as a result of editing. Our findings indicate that therapeutic gene editing in hepatocytes is possible in an AATD mouse model.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Phenotype , alpha 1-Antitrypsin Deficiency/genetics , alpha 1-Antitrypsin Deficiency/metabolism , alpha 1-Antitrypsin/genetics , Adenoviridae/genetics , Animals , Cell Proliferation , Disease Models, Animal , Gene Expression , Genetic Vectors/genetics , Humans , Mice , Mice, Transgenic , Transduction, Genetic , Transgenes , alpha 1-Antitrypsin/blood , alpha 1-Antitrypsin/metabolism , alpha 1-Antitrypsin Deficiency/pathology , alpha 1-Antitrypsin Deficiency/therapy
10.
Methods Mol Biol ; 1330: 57-68, 2015.
Article in English | MEDLINE | ID: mdl-26621589

ABSTRACT

Nuclear reprogramming technologies in general and induced pluripotent stem cells (iPSCs) in particular have opened the door to a vast number of practical applications in regenerative medicine and biotechnology. It also represents a possible alternative to the still evasive achievement of embryonic stem cells (ESCs) isolation from refractory species such as Bos. taurus. Herein, we described a protocol for bovine iPSCs (biPSCs) generation and characterization. The protocol is based on the overexpression of the exogenous transcription factors NANOG, OCT4, SOX2, KLF4 and c-MYC, using a pantropic retroviral system.


Subject(s)
Cellular Reprogramming , Fibroblasts/cytology , Fibroblasts/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Animals , Cattle , Cell Culture Techniques , Cell Transformation, Neoplastic , Disease Models, Animal , Embryoid Bodies , Female , Genetic Vectors/genetics , Heterografts , Kruppel-Like Factor 4 , Mice , Retroviridae/genetics , Reverse Transcriptase Polymerase Chain Reaction , Teratoma/genetics , Teratoma/pathology , Transduction, Genetic , Transgenes
11.
Methods Mol Biol ; 1330: 253-67, 2015.
Article in English | MEDLINE | ID: mdl-26621602

ABSTRACT

Interest is increasing in transcription activator-like effector nucleases (TALENs) as a tool to introduce targeted double-strand breaks into the large genomes of human and animal cell lines. The produced DNA lesions stimulate DNA repair pathways, error-prone but dominant non-homologous end joining (NHEJ) and accurate but less occurring homology-directed repair (HDR), and as a result targeted genes can be modified. Here, we describe a modified Golden-Gate cloning method for generating TALENs and also details for targeting genes in mouse embryonic stem cells. The protocol described here can be used for modifying the genome of a broad range of pluripotent cell lines.


Subject(s)
Endonucleases/metabolism , Gene Targeting/methods , Genetic Engineering/methods , Genome , Animals , Binding Sites , Cloning, Molecular , Computational Biology/methods , Embryonic Stem Cells , Mice , Plasmids/genetics , Polymerase Chain Reaction , Protein Binding , Sequence Analysis, DNA , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...