Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 95: 574-581, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27867054

ABSTRACT

Chitosan is a natural mucoadhesive, biodegradable, biocompatible and nontoxic polymer which has been used in pharmaceutical industry for a lot of purposes such as dissolution enhancing, absorption enhancing, sustained releasing and protein, gene or drug delivery. Two major disadvantages of chitosan are poor solubility in physiological pH and low efficiency for protein and gene delivery. In this study thiolated methylated N-(4-N,N-dimethylaminobenzyl) chitosan was prepared for the first time in order to improve the solubility and delivery properties of chitosan. This novel chitosan derivative was characterized using 1H NMR, Ellman test, TGA and Zetasizer. Cell toxicity studies were performed on Human Embryonic Kidney 293 (Hek293) cell line using XTT method, to investigate the potential effect of this new derivative on cell viability. 1H NMR results showed that all substitution reactions were successfully carried out. Zeta potential of new derivative at acidic and physiological pHs was greater than chitosan and it revealed an increase in solubility of the derivative. Furthermore, it had no significant cytotoxicity against Hek293 cell line in comparison to chitosan. These findings confirm that this new derivative can be introduced as a suitable compound for biomedical purposes.


Subject(s)
Chitosan/analogs & derivatives , Chitosan/chemistry , Drug Carriers/chemistry , Sulfhydryl Compounds/chemistry , Cell Survival/drug effects , Chitosan/toxicity , Drug Carriers/toxicity , HEK293 Cells , Humans , Solubility , Sulfhydryl Compounds/toxicity
2.
Avicenna J Med Biotechnol ; 8(4): 169-174, 2016.
Article in English | MEDLINE | ID: mdl-27920884

ABSTRACT

BACKGROUND: Antibiotic resistant bacteria can be considered as a main problem in infection management. Zinc oxide nanoparticles (ZnO NPs), individually or in combination with antibiotics, can be considered as good candidates for struggling against drug resistant bacteria. METHODS: In this study, Zinc oxide nanoparticles were synthesized using sol-gel method in low temperature as a cost effective procedure and characterized by X-ray diffraction and Scanning Electron Microscopy. Antibacterial activity of 9 new combinations of Zinc oxide nanoparticles and ceftazidime was assessed against standards and new clinically isolated multi drug resistant Pseudomonas aeruginosa (P. aeruginosa), in order to evaluate enhancement effect of synthesized Zinc oxide nanoparticles on antibacterial activity of ceftazidime. RESULTS: The results indicated that desirable effects can be seen at 6 and 7 mM of Zinc oxide nanoparticles (60 to 100% inhibition). Moreover, after evaluation of 9 new combinations with various concentrations of both components, it was demonstrated that Zinc oxide nanoparticles can enhance the antibacterial activity of ceftazidime, against some bacterial strains of P. aeruginosa. The highest activity was observed with the concentration of 20 µg/ml ceftazidime in the presence of 5, 6 or 7 mM of Zinc oxide nanoparticles. CONCLUSION: Zinc oxide nanoparticles in appropriate concentrations can be proposed as new and promising candidates for overcoming bacterial resistance.

3.
Carbohydr Polym ; 149: 131-9, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27261738

ABSTRACT

Chitosan, as a biocompatible polymer, is very attractive for biomedical applications. Continues studies are performing for improving its physicochemical features in order to make it more suitable for such approaches. In this study, methylated 4-N,N dimethyl aminobenzyl N,O carboxymethyl chitosan (MABCC) was synthesized,as a new chitosan derivative, in three steps. The investigations were carried out using FTIR, NMR, TGA and zeta potential measurement. Antibacterial and cell viability assessments were performed on four bacterial strains and two cell lines respectively. FTIR and NMR results showed that all substitution reactions were successfully carried out. Zeta potential of MABCC at various pH especially alkaline pH was greater than chitosan and it revealed increasing the solubility of the derivative. Antibacterial activity of MABCC was extremely greater than chitosan especially in Gram positive bacteria.Furthermore,it had no significant cytotoxicity against MCF-7 and Skov-3 cell lines in comparison to chitosan. These findings confirm that this new derivative can be introduced as a suitable compound for biomedical purposes.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Chitosan/chemistry , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemistry , Chemistry Techniques, Synthetic , Chitosan/analogs & derivatives , Humans , MCF-7 Cells , Methylation
SELECTION OF CITATIONS
SEARCH DETAIL
...