Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 926: 171964, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38537810

ABSTRACT

Short (SCCPs) and medium (MCCPs) chain chlorinated paraffins being the emerging organic pollutants have raised serious concerns due to their widespread use and related human health risks. However, their occurrence in aquatic bodies like rivers and associated damage to ecological integrity is yet unknown in some regions of the world. The current study is the first ever assessment of SCCPs and MCCPs in sediment and water of river Ravi, Pakistan. Spatial occurrence and associated ecological risks were investigated from sediments (n = 16) and composite water samples (n = 8) collected at eight locations along the stretch of river Ravi. The concentrations of SCCPs and MCCPs varied from below limit of detection (

Subject(s)
Chlorine , Hydrocarbons, Chlorinated , Humans , Animals , Hydrocarbons, Chlorinated/analysis , Paraffin/analysis , Rivers , Pakistan , Environmental Monitoring , Risk Assessment , Carbon , China
2.
Environ Geochem Health ; 45(8): 6053-6068, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37233862

ABSTRACT

Use of groundwater for drinking purpose poses serious hazards of arsenic contamination particularly in plains of western Himalayan region. Therefore, current study was designed to investigate the level of Arsenic (As) in the water obtained from tubewells in a metropolitan city of Lahore, Pakistan and assess the human health risk. So, a total of 73 tubewells were sampled randomly in the manner that the whole study region was covered without any clustering. The water samples were analyzed for As using atomic absorption spectrophotometer. These samples were also tested for total dissolved solids, chlorides, pH, alkalinity, turbidity, hardness and calcium. GIS based hotspots analysis technique was used to investigate the spatial distribution patterns. Our results revealed that only one sample out of total 73 had arsenic level below the WHO guideline of 10 µg/L. The spatial distribution map of arsenic revealed that the higher concentrations of arsenic are present in the north-western region of Lahore. The cluster and outlier analysis map using Anselin Local Moran's I statistic indicated the presence of an arsenic cluster in the west of River Ravi. Furthermore, the optimized hotspot analysis based on Getis-Ord Gi* statistics confirmed the statistical significance (P < 0.05) and (P < 0.01) of these samples from the vicinity of River Ravi. Regression analysis showed that variables such as turbidity, alkalinity, hardness, chlorides, calcium and total dissolved solids were significantly (all P < 0.05) associated with level of Arsenic in tubewells. Whereas, PH and electrical conductivity and other variables like town, year of installation, depth and diameter of the wells were not significantly associated with Arsenic concentrations in tubewells. Principal component analysis (PCA) exhibited that the random distribution of tubewell samples showed no distinct clustering with towns studied. Health risk assessment based on hazard and Cancer risk index revealed serious risk of developing carcinogenic and non-carcinogenic diseases particularly in children. The health risk due to prevalence of high As concentration in tubewells' water need to be mitigated immediately to avoid worst consequences in future.


Subject(s)
Arsenic , Drinking Water , Groundwater , Water Pollutants, Chemical , Child , Humans , Drinking Water/analysis , Arsenic/analysis , Geographic Information Systems , Pakistan , Calcium/analysis , Chlorides/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Groundwater/analysis , Risk Assessment
3.
Environ Sci Pollut Res Int ; 30(2): 4866-4880, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35976585

ABSTRACT

The exposure variation of arsenic from different ground and surface water sources has remained unpredictable which may cause severe human health problems. The current study is, therefore, designed to analyze the spatial variability of arsenic contamination in shallow aquifer and assess the potential human health risks. For this purpose, a total of 55 groundwater, 10 drain water, 4 river water, and 6 sediment samples were collected along zero to 5 km stretch of the River Ravi, Lahore. All water samples were tested for As, pH, and total dissolved solids (TDS), whereas sediments were only tested for As. Health risk models were used to predict cancer and non-cancer risk in adults and children. Among water samples, highest median (minimum-maximum) concentrations (µg/L) of As were recorded 53.32 (1.98-1555) in groundwater, followed by 53.04 (1.58-351.5) in drain water, and 4.80 (2.13-8.67) in river water, respectively, whereas As concentration (mg/kg) in river sediments was 6.03 (5.56-13.92). Variation of As in groundwater was non-significant (P > 0.05) among every 1-km stretch from the Ravi River. However, maximum median concentrations (µg/L) of 60.18 and 60.08 were recorded between 2-3 and 0-1 km from River Ravi, respectively, reflecting possible mixing of river water with shallow aquifers. A very high cancer and non-cancer risk (HI > 1.0 × 10-4) through groundwater As exposure was predicted for both children and adults. The current study concluded that prevalence of As above WHO prescribed limits in shallow aquifer along the urban stretch of the River Ravi is posing serious health risk to the exposed population.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , Child , Humans , Rivers , Arsenic/analysis , Pakistan , Water Pollutants, Chemical/analysis , Groundwater/analysis , Risk Assessment , Water/analysis , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...