Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 13(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37370938

ABSTRACT

With the beginning of the high-throughput screening, in silico-based drug response analysis has opened lots of research avenues in the field of personalized medicine. For a decade, many different predicting techniques have been recommended for the antineoplastic (anti-cancer) drug response, but still, there is a need for improvements in drug sensitivity prediction. The intent of this research study is to propose a framework, namely NeuPD, to validate the potential anti-cancer drugs against a panel of cancer cell lines in publicly available datasets. The datasets used in this work are Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE). As not all drugs are effective on cancer cell lines, we have worked on 10 essential drugs from the GDSC dataset that have achieved the best modeling results in previous studies. We also extracted 1610 essential oncogene expressions from 983 cell lines from the same dataset. Whereas, from the CCLE dataset, 16,383 gene expressions from 1037 cell lines and 24 drugs have been used in our experiments. For dimensionality reduction, Pearson correlation is applied to best fit the model. We integrate the genomic features of cell lines and drugs' fingerprints to fit the neural network model. For evaluation of the proposed NeuPD framework, we have used repeated K-fold cross-validation with 5 times repeats where K = 10 to demonstrate the performance in terms of root mean square error (RMSE) and coefficient determination (R2). The results obtained on the GDSC dataset that were measured using these cost functions show that our proposed NeuPD framework has outperformed existing approaches with an RMSE of 0.490 and R2 of 0.929.

2.
PeerJ Comput Sci ; 9: e1685, 2023.
Article in English | MEDLINE | ID: mdl-38192480

ABSTRACT

Gastrointestinal (GI) endoscopy is an active research field due to the lethal cancer diseases in the GI tract. Cancer treatments result better if diagnosed early and it increases the survival chances. There is a high miss rate in the detection of the abnormalities in the GI tract during endoscopy or colonoscopy due to the lack of attentiveness, tiring procedures, or the lack of required training. The procedure of the detection can be automated to the reduction of the risks by identifying and flagging the suspicious frames. A suspicious frame may have some of the abnormality or the information about anatomical landmark in the frame. The frame then can be analysed for the anatomical landmarks and the abnormalities for the detection of disease. In this research, a real-time endoscopic abnormalities detection system is presented that detects the abnormalities and the landmarks. The proposed system is based on a combination of handcrafted and deep features. Deep features are extracted from lightweight MobileNet convolutional neural network (CNN) architecture. There are some of the classes with a small inter-class difference and a higher intra-class differences, for such classes the same detection threshold is unable to distinguish. The threshold of such classes is learned from the training data using genetic algorithm. The system is evaluated on various benchmark datasets and resulted in an accuracy of 0.99 with the F1-score of 0.91 and Matthews correlation coefficient (MCC) of 0.91 on Kvasir datasets and F1-score of 0.93 on the dataset of DowPK. The system detects abnormalities in real-time with the detection speed of 41 frames per second.

3.
Data Brief ; 42: 108107, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35434216

ABSTRACT

Vehicle make and model recognition plays an important role in monitoring traffic in a vehicle surveillance system. Identifying vehicle make and model is a challenging task due to intraclass variation, view-point variation, and different illumination conditions (Hassan et al., 2021). In this domain, many datasets regarding car make and model e.g. Stanford Car (Krause et al., 2013), VMMRdB (Tafazzoli et al., 2017, Yang et al., 2015), have already been experimented with by different researchers. However, most of the images in these datasets are high-quality images with no illumination conditions. Further, these images are collected through web crawling or image scraping. This enabled the researchers to achieve good results using deep learning models (Luo et al., 2015). In this article, we have presented an image dataset of 3847 images, designed from high-resolution (1920 1080) videos collected from camera units installed on a highway at different viewpoints with variable frame rates. This helped in collecting images demonstrating a real-world scenario and made this dataset more challenging. Due to consideration of different viewpoints and illumination effects, the dataset will help researchers to evaluate their machine learning models on realworld data (Manzoor et al., 2019).

4.
IEEE Trans Pattern Anal Mach Intell ; 35(5): 1164-77, 2013 May.
Article in English | MEDLINE | ID: mdl-23520257

ABSTRACT

Face recognition subject to uncontrolled illumination and blur is challenging. Interestingly, image degradation caused by blurring, often present in real-world imagery, has mostly been overlooked by the face recognition community. Such degradation corrupts face information and affects image alignment, which together negatively impact recognition accuracy. We propose a number of countermeasures designed to achieve system robustness to blurring. First, we propose a novel blur-robust face image descriptor based on Local Phase Quantization (LPQ) and extend it to a multiscale framework (MLPQ) to increase its effectiveness. To maximize the insensitivity to misalignment, the MLPQ descriptor is computed regionally by adopting a component-based framework. Second, the regional features are combined using kernel fusion. Third, the proposed MLPQ representation is combined with the Multiscale Local Binary Pattern (MLBP) descriptor using kernel fusion to increase insensitivity to illumination. Kernel Discriminant Analysis (KDA) of the combined features extracts discriminative information for face recognition. Last, two geometric normalizations are used to generate and combine multiple scores from different face image scales to further enhance the accuracy. The proposed approach has been comprehensively evaluated using the combined Yale and Extended Yale database B (degraded by artificially induced linear motion blur) as well as the FERET, FRGC 2.0, and LFW databases. The combined system is comparable to state-of-the-art approaches using similar system configurations. The reported work provides a new insight into the merits of various face representation and fusion methods, as well as their role in dealing with variable lighting and blur degradation.


Subject(s)
Algorithms , Biometric Identification/methods , Face/anatomy & histology , Artificial Intelligence , Databases, Factual , Discriminant Analysis , Humans , Image Processing, Computer-Assisted
5.
IEEE Trans Inf Technol Biomed ; 10(4): 782-93, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17044412

ABSTRACT

Quantitative cell imagery in cancer pathology has progressed greatly in the last 25 years. The application areas are mainly those in which the diagnosis is still critically reliant upon the analysis of biopsy samples, which remains the only conclusive method for making an accurate diagnosis of the disease. Biopsies are usually analyzed by a trained pathologist who, by analyzing the biopsies under a microscope, assesses the normality or malignancy of the samples submitted. Different grades of malignancy correspond to different structural patterns as well as to apparent textures. In the case of prostate cancer, four major groups have to be recognized: stroma, benign prostatic hyperplasia, prostatic intraepithelial neoplasia, and prostatic carcinoma. Recently, multispectral imagery has been used to solve this multiclass problem. Unlike conventional RGB color space, multispectral images allow the acquisition of a large number of spectral bands within the visible spectrum, resulting in a large feature vector size. For such a high dimensionality, pattern recognition techniques suffer from the well-known "curse-of-dimensionality" problem. This paper proposes a novel round-robin tabu search (RR-TS) algorithm to address the curse-of-dimensionality for this multiclass problem. The experiments have been carried out on a number of prostate cancer textured multispectral images, and the results obtained have been assessed and compared with previously reported works. The system achieved 98%-100% classification accuracy when testing on two datasets. It outperformed principal component/linear discriminant classifier (PCA-LDA), tabu search/nearest neighbor classifier (TS-1NN), and bagging/boosting with decision tree (C4.5) classifier.


Subject(s)
Artificial Intelligence , Colorimetry/methods , Image Interpretation, Computer-Assisted/methods , Microscopy/methods , Pattern Recognition, Automated/methods , Prostatic Neoplasms/diagnosis , Spectrum Analysis/methods , Humans , Male , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...