Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
2.
ACS Omega ; 9(8): 8632-8653, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38434807

ABSTRACT

Agriculture waste has increased annually due to the global food demand and intensive animal production. Preventing environmental degradation requires fast and effective agricultural waste treatment. Aerobic digestion or composting uses agricultural wastes to create a stabilized and sterilized organic fertilizer and reduces chemical fertilizer input. Indeed, conventional composting technology requires a large surface area, a long fermentation period, significant malodorous emissions, inferior product quality, and little demand for poor end results. Conventional composting loses a lot of organic nitrogen and carbon. Thus, this comprehensive research examined sustainable and adaptable methods for improving agricultural waste composting efficiency. This review summarizes composting processes and examines how compost additives affect organic solid waste composting and product quality. Our findings indicate that additives have an impact on the composting process by influencing variables including temperature, pH, and moisture. Compost additive amendment could dramatically reduce gas emissions and mineral ion mobility. Composting additives can (1) improve the physicochemical composition of the compost mixture, (2) accelerate organic material disintegration and increase microbial activity, (3) reduce greenhouse gas (GHG) and ammonia (NH3) emissions to reduce nitrogen (N) losses, and (4) retain compost nutrients to increase soil nutrient content, maturity, and phytotoxicity. This essay concluded with a brief summary of compost maturity, which is essential before using it as an organic fertilizer. This work will add to agricultural waste composting technology literature. To increase the sustainability of agricultural waste resource utilization, composting strategies must be locally optimized and involve the created amendments in a circular economy.

3.
RSC Adv ; 13(45): 31855-31872, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37920195

ABSTRACT

In the current study, seven non-fullerene compounds abbreviated as ATTD2-ATTD8 were designed through structural tailoring and their nonlinear optical (NLO) properties were reported. The objective of this study was to explore the potential for newly configured D-π-A type non-fullerene-based compounds. Quantum chemical methods were adopted and revealed the molecules as highly efficient materials with favorable NLO characteristics for use in optoelectronic devices. The M06 functional along with the 6-311G(d,p) basis set in chloroform solvent were utilized for the natural bonding orbital (NBO) analysis, absorption spectra and computational assessments of frontier molecular orbitals (FMOs), global reactivity descriptors (GRPs), transition density matrix (TDM) and nonlinear optical properties (NLO) for ATTR1 and ATTD2-ATTD8. The HOMO-LUMO energy gap was significantly reduced in all the designed moieties compared to the reference compound in the following decreasing order: ATTR1 > ATTD8 > ATTD4 > ATTD5 > ATTD2 > ATTD7 > ATTD6 > ATTD3. All of the designed molecules (ATTD2-ATTD8) showed good NLO response. Global reactivity parameters were found to be closely associated with the band gap between the HOMO and LUMO orbitals, and the compound with the smallest energy gap, ATTD3, exhibited a lower hardness value of 1.754 eV and higher softness value of 0.570 eV with outstanding NLO response. For the reference compound and ATTD2-ATTD8 derivatives, attributes like dipole moment (µtot), average polarizability 〈α〉, first hyperpolarizability (ßtot), and second hyperpolarizability γtot were calculated. Out of all the derivatives, ATTD3 revealed the highest amplitude with a ßtot of 8.23 × 10-27 esu, which was consistent with the reduced band gap (1.754 eV) and suggested it was the best possibility for NLO materials in the future.

4.
Heliyon ; 9(7): e18407, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37539244

ABSTRACT

Perovskite materials are considered the gateway of various physical applications to meet the production and consumption of energy and medical fields. Density Functional Theory (DFT) becomes the most important field in the modern era to investigate perovskite materials for various physical properties. DFT nowadays is used to explore the perovskite materials for a lot of applications like photocatalytic, optoelectronic, and photovoltaics. We discussed radium based cubic hydrides RbRaX3 (while X = F & Cl) perovskite material's electrical, optical, elastic, & physical characteristics with the help of DFT-based CASTEP code with PBE exchange-correlation efficient of GGA. The RbRaF3 & RbRaCl3 have three-dimensional nature by means of space group 221 (Pm3 m). According to electronic characteristics, the direct bandgap of RbRaF3 RbRaCl3 are 3.18eV and 2.209eV, respectively. Both compounds are brittle in nature via Poisson's ratio & Pugh's criteria. Thus, our novel RbRaX3 (X = F and Cl) compounds have excellent applications for solar cell and medical areas.

5.
Molecules ; 28(7)2023 Apr 02.
Article in English | MEDLINE | ID: mdl-37049930

ABSTRACT

The synthesis and design of low-cost visible-light-active catalysts for the photodegradation of organic dyes have been regarded as an efficient way to use solar energy in addressing environmental issues. We report the fabrication of MoS2/CdS nanoparticles functionalized with Bi2S3 nanoflakes. The ternary composites of "MoS2/CdS/Bi2S3" were synthesized in situ by a hydrothermal method at different temperatures. The changes in structural, optical, and morphological properties of the synthesized CdS/MoS2/Bi2S3 were explored. The effects of Bi2S3 on CdS/MoS2 were thoroughly studied by performing an X-ray diffractometer (XRD), a scanning electron microscope (SEM), an ultra-violet-visible spectrometer (Uv-vis), and Fourier transform infrared spectroscopic (FT-IR) studies of the nanoparticles. XRD confirms the cubical crystal structure of the nanoparticles. SEM studies possess the modulation in the surface morphology with the tenability in volume ratios of "MoS2/CdS/Bi2S3" composites. It was observed that the bandgaps calculated using absorption measurements could be manipulated from 2.40 eV to 0.97 eV with varying Bi2S3 in the MoS2/CdS nanostructures. FT-IR confirmed the synthesis of "MoS2/CdS/Bi2S3" nanoparticles. On allowing the visible light to fall for 120 min, it was observed that "MoS2/CdS/Bi2S3" degrades the methylene blue up to 90%. The calculated results of "MoS2/CdS/Bi2S3" suggest that the synthesized material could be a strong candidate for photodegradation applications. This research work explains the synthesis of MoS2/CdS/Bi2S3-based nanocomposites for the degradation of dye using a photocatalytic process. The final results show that this catalyst effectively degrades the dye.

6.
Heliyon ; 9(2): e13687, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36873152

ABSTRACT

Perovskite materials play a vital role in the field of material science via experimental as well as theoretical calculations. Radium semiconductor materials are considered the backbone of medical fields. These materials are considered in high technological fields to be used as controlling the decay ability. In this study, radium-based cubic fluoro-perovskite XRaF3 (where X = Rb and Na) are calculated using a DFT (density functional theory). These compounds are cubic nature with 221 space groups that construct on CASTEP (Cambridge-serial-total-energy-package) software with ultra-soft PPPW (pseudo-potential plane-wave) and GGA (Generalized-Gradient-approximation)-PBE (Perdew-Burke-Ernzerhof) exchange-correlation functional. The structural, optical, electronic, and mechanical properties of the compounds are calculated. According to the structural properties, NaRaF3 and RbRaF3 have a direct bandgap with 3.10eV and 4.187eV of NaRaF3 and RbRaF3, respectively. Total density of states (DOS) and partial density of states (PDOS) provide confirmation to the degree of electrons localized in distinct bands. NaRaF3 material is semiconductors and RbRaF3 is insulator, according to electronic results. The imaginary element dispersion of the dielectric function reveals its wide variety of energy transparency. In both compounds, the optical transitions are examined by fitting the damping ratio for the notional dielectric function scaling to the appropriate peaks. The absorption and the conductivity of NaRaF3 compound is better than the RbRaF3 compound which make it suitable for the solar cell applications increasing the efficiency and work function. We observed that both compounds are mechanically stable with cubic structure. The criteria for the mechanical stability of compounds are also met by the estimated elastic results. These compounds have potential application in field of solar cell and medical. Objectives: The band gap, absorption and the conductivity are necessary conditions for potential applications. Here, literature was reviewed to check computational translational insight into the relationships between absorption and conductivity for solar cell and medical applications of novel RbRaF3 and NaRaF3 compounds.

7.
Environ Res ; 222: 115314, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36738770

ABSTRACT

The critical challenge being faced by our current modern society on a global scale is to reduce the surging effects of climate change and global warming, being caused by anthropogenic emissions of CO2 in the environment. Present study reports the surface driven adsorption potential of deep eutectic solvents (DESs) surface functionalized cerium oxide nanoparticles (CeNPs) for low pressure CO2 separation. The phosphonium based DESs were prepared using tetra butyl phosphoniumbromide as hydrogen bond acceptor (HBA) and 6 acids as hydrogen bond donors (HBDs). The as-developed DESs were characterized and employed for the surface functionalization of CeNPs with their subsequent utilization in adsorption-based CO2 adsorption. The synthesis of as-prepared DESs was confirmed through FTIR measurements and absence of precipitates, revealed through visual observations. It was found that DES6 surface functionalized CeNPs demonstrated 27% higher adsorption performance for CO2 capturing. On the contrary, DES3 coated CeNPs exhibited the least adsorption progress for CO2 separation. The higher adsorption performance associated with DES6 coated CeNPs was due to enhanced surface affinity with CO2 molecules that must have facilitated the mass transport characteristics and resulted an enhancement in CO2 adsorption performance. Carboxylic groups could have generated an electric field inside the pores to attract more polarizable adsorbates including CO2, are responsible for the relatively high values of CO2 adsorption. The quadruple movement of the CO2 molecules with the electron-deficient and pluralizable nature led to the enhancement of the interactive forces between the CO2 molecules and the CeNPs decorated with the carboxylic group hydrogen bond donor rich DES. The current findings may disclose the new research horizons and theoretical guidance for reduction in the environmental effects associated with uncontrolled CO2 emission via employing DES surface coated potential CeNPs.


Subject(s)
Cerium , Nanoparticles , Carbon Dioxide , Deep Eutectic Solvents , Cerium/chemistry , Solvents/chemistry
8.
Chemosphere ; 320: 138002, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36731675

ABSTRACT

Green synthesis of nanoparticles can be beneficial due to their low toxicity, cost-effectiveness, and environment-friendliness. Its synthesis involves the use of eco-friendly and biodegradable materials such as plant extracts, natural products, and microorganisms to reduce the negative environmental impacts of traditional nanoparticle synthesis methods. Herein, Spinacia oleracea leaves are used as a boron source, and a visible light active photo-catalyst is produced. The effect of Co-Catalyst Boron in Graphitic carbon nitride based nanocomposites for methylene blue dye photo-degradation in water is examined. Titanium dioxide (TiO2) was activated by changing the hydrogen potential value while utilizing a typical orange dye as a sensitizer. The graphitic carbon nitride/TiO2 nanocomposites were synthesized through a hydrothermal technique. To improve their performance, Boron used as a co-catalyst and B-doped g-C3N4/TiO2nanocomposites prepared through wet chemical co-percipitate mathod. UV-visible spectroscopy, SEM and FTIR spectroscopy were used to analyze the photocatalyst and boron-doped composites in detail. The photocatalytic performance of pristine photocatalyst CNTx (x = 2%,4%,6%,8%) and B-doped CNTx composites were examined for Methylene Blue degradation in the presence of a light source. The spectroscopy analysis showed that B-doped g-C3N4/TiO2 -8% nano-composites performed better than all other synthesized pristine catalysts and composites in this research. This research has demonstrated that B-doped g-C3N4/TiO2 composites can provide an ideal solution for treating polluted water using visible light as a source to activate these photocatalysts.


Subject(s)
Boron , Spinacia oleracea , Methylene Blue , Water/chemistry
9.
Discov Nano ; 18(1): 15, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36795251

ABSTRACT

Perovskites are the key enabler materials for the solar cell applications in the achievement of high performance and low production costs. In this article, the structural, mechanical, electronic, and optical properties of rubidium-based cubic nature perovskite LiHfO3 and LiZnO3 are investigated. These properties are investigated using density-functional theory with the aid of CASTEP software by introducing ultrasoft pseudo-potential plane-wave (USPPPW) and GG-approximation-PB-Ernzerhof exchange-correlation functionals. It is investigated that the proposed compounds exhibit stable cubic phase and meet the criteria of mechanical stability by the estimated elastic properties. Also, according to Pugh's criterion, it is noted that LiHfO3 is ductile and LiZnO3 is brittle. Furthermore, the electronic band structure investigation of LiHfO3 and LiZnO3 shows that they have indirect bandgap (BG). Moreover, the BG analysis of the proposed materials shows that these are easily accessible. Also, the results for partial density of states (DOS) and total DOS confirm the degree of a localized electron in the distinct band. In addition, the optical transitions in the compounds are examined by fitting the damping ratio for the notional dielectric functions scaling to the appropriate peaks. At absolute zero temperature, the materials are observed as semiconductors. Therefore, it is evident from the analysis that the proposed compounds are excellent candidates for solar cells and protective rays applications.

10.
Ecotoxicol Environ Saf ; 252: 114624, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36758507

ABSTRACT

The excessive accumulation of cobalt (Co) in plant tissues severely impairs plant growth that ultimately reduces the yield. However, melatonin (MT) has been known to mediate the abiotic stress tolerance in plants. The present study aimed at investigating the protective mechanisms of exogenously applied MT (0, 50 and 100 µM) under Co (0, 100, 200 and 300 µM) stress by focusing on morpho-physiological, biochemical and cellular characterizations of Brassica napus plants. Cobalt (300 µM) alone treatment drastically inhibited the stomatal conductance, plant height (45%), leaf area (30%), free amino acid (139%), relative electrolyte leakage (109%), and total soluble sugars (71%), compared with the control. However, the exogenous supply of MT notably minimized the oxidative damage, lipid peroxidation and maintained the membrane integrity under Co-toxicity by restricting the overproduction of ROS (H2O2 and O2•), and MDA in leaves and roots. Melatonin significantly enhanced the activities of ROS-scavenging antioxidant enzymes, secondary metabolism-related phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), stress-responsive genes (heat shock protein as HSP-90, methyl transferase as MT) and regulated the Co-transporters, especially in roots. These findings indicated that an exogenous supply of MT improve the plant morphology, photosynthetic apparatus, osmotic adjustments, and antioxidant defense systems by enhancing the Co-detoxification in B. napus plants.


Subject(s)
Brassica napus , Melatonin , Antioxidants/pharmacology , Antioxidants/metabolism , Melatonin/pharmacology , Melatonin/metabolism , Brassica napus/genetics , Brassica napus/metabolism , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism
11.
RSC Adv ; 12(48): 30985-31003, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36349013

ABSTRACT

Vanadium dioxide (VO2)-based energy-saving smart films or coatings aroused great interest in scientific research and industry due to the reversible crystalline structural transition of VO2 from the monoclinic to tetragonal phase around room temperature, which can induce significant changes in transmittance and reflectance in the infrared (IR) range. However, there are still some obstacles for commercial application of VO2-based films or coatings in our daily life, such as the high phase transition temperature (68 °C), low luminous transmittance, solar modulation ability, and poor environmental stability. Particularly, due to its active nature chemically, VO2 is prone to gradual oxidation, causing deterioration of optical properties during very long life span of windows. In this review, the recent progress in enhancing the thermochromic properties of VO2-hybrid materials especially based on environmental stability has been summarized for the first time in terms of structural modifications such as core-shell structures for nanoparticles and nanorods and thin-films with single layer, layer-by-layer, and sandwich-like structures due to their excellent results for improving environmental stability. Moreover, future development trends have also been presented to promote the goal of commercial production of VO2 smart coatings.

12.
RSC Adv ; 12(42): 27517-27524, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36276033

ABSTRACT

The structural, electronic, optical, and mechanical characteristics of the cubic inorganic perovskites XZrO3 (X = Rb and K) based on Rb and K were studied using Cambridge Serial Total Energy Package (CASTEP)-based density functional theory (DFT) via the ultrasoft pseudo-potential (USP) plane wave and generalized gradient approximation (GGA)-Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. The measured lattice parameters are 3.55 Å and 4.23 Å, and the band gaps of RbZrO3 and KZrO3 are 3.57 eV and 3.78 eV, respectively. Our results indicate that the compounds have indirect and wide bandgaps, making them useful for improving conductivity. It is observed that the compounds have anisotropic, ductile, and brittle natures. The anisotropic factor values of RbZrO3 and KZrO3 are 0.67067 and 0.87224, and their Poisson's ratios are 0.27356 and 0.25853, respectively. In terms of optical properties, they exhibited high optical absorption and conductivity and were active in the visible region for solar cell applications. These results indicate that they could be highly useful for light-emitting diodes (LEDs) and other reflection purposes owing to their indirect bandgap. The results of our investigation of RbZrO3 and KZrO3 present them as favorable materials for solar cell and LED applications.

13.
Insects ; 13(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36292828

ABSTRACT

Fall armyworm [Spodoptera frugiperda (J. E. Smith, 1797)] was first reported in the Americas, then spread to all the continents of the world. Chemical insecticides are frequently employed in managing fall armyworms. These insecticides have various modes of actions and target sites to kill the insects. Chlorantraniliprole is a selective insecticide with a novel mode of action and is used against Lepidopteran, Coleopteran, Isopteran, and Dipteran pests. This study determined chlorantraniliprole's lethal, sub-lethal, and trans-generational effects on two consecutive generations (F0, F1, and F2) of the fall armyworm. Bioassays revealed that chlorantraniliprole exhibited higher toxicity against fall armyworms with a LC50 of 2.781 mg/L after 48 h of exposure. Significant differences were noted in the biological parameters of fall armyworms in all generations. Sub-lethal concentrations of chlorantraniliprole showed prolonged larval and adult durations. The parameters related to the fitness cost in F0 and F1 generations showed non-significant differences. In contrast, the F2 generation showed lower fecundity at lethal (71 eggs/female) and sub-lethal (94 eggs/female) doses of chlorantraniliprole compared to the control (127.5-129.3 eggs/female). Age-stage specific survival rate (Sxj), life expectancy (Exj) and reproductive rate (Vxj) significantly differed among insecticide-treated groups in all generations compared to the control. A comparison of treated and untreated insects over generations indicated substantial differences in demographic parameters such as net reproduction rate (R0), intrinsic rate of increase (r), and mean generation time (T). Several biological and demographic parameters were shown to be negatively impacted by chlorantraniliprole. We conclude that chlorantraniliprole may be utilized to manage fall armyworms with lesser risks.

14.
Front Plant Sci ; 13: 973782, 2022.
Article in English | MEDLINE | ID: mdl-36072329

ABSTRACT

Salinity has become a major environmental concern of agricultural lands, impairing crop production. The current study aimed to examine the role of zinc oxide nanoparticles (ZnO NPs) in reducing the oxidative stress induced by salinity and the overall improvement in phytochemical properties in barley. A total of nine different barley genotypes were first subjected to salt (NaCl) stress in hydroponic conditions to determine the tolerance among the genotypes. The genotype Annora was found as most sensitive, and the most tolerant genotype was Awaran 02 under salinity stress. In another study, the most sensitive (Annora) and tolerant (Awaran 02) barley genotypes were grown in pots under salinity stress (100 mM). At the same time, half of the pots were provided with the soil application of ZnO NPs (100 mg kg-1), and the other half pots were foliar sprayed with ZnO NPs (100 mg L-1). Salinity stress reduced barley growth in both genotypes compared to control plants. However, greater reduction in barley growth was found in Annora (sensitive genotype) than in Awaran 02 (tolerant genotype). The exogenous application of ZnO NPs ameliorated salt stress and improved barley biomass, photosynthesis, and antioxidant enzyme activities by reducing oxidative damage caused by salt stress. However, this positive effect by ZnO NPs was observed more in Awaran 02 than in Annora genotype. Furthermore, the foliar application of ZnO NPs was more effective than the soil application of ZnO NPs. Findings of the present study revealed that exogenous application of ZnO NPs could be a promising approach to alleviate salt stress in barley genotypes with different levels of salinity tolerance.

15.
Environ Sci Pollut Res Int ; 29(11): 16772-16781, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35041164

ABSTRACT

The world is facing environmental pollution and is in an alarming situation due to industrialization and urbanization. Especially, industrial wastewater discharge is causing serious pollution in the environment (water, soil, and air) and has become a challenge for researchers and scientists. Wastewater contains heavy metals like Cu, Ni, Cr, Pb, and Ar and causes toxicity in living beings and the environment. In this review, the sources of heavy metals and their toxicological effects on the environment have been reviewed. Various remediation techniques such as reverse osmosis, chemical precipitation, and ultrafiltration are being used for the treatment of wastewater, but still are limited in their efficiencies, residues, cost, and versatility. In this study, the most promising wastewater treatment technique, the physic-chemical technique, has been reviewed along with its working mechanism and efficiency. Further, the pros and cons of this technique and sub-techniques have also been reviewed to provide a basic understanding to beginners and a pathway to experts in the selection of better techniques.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Water Purification , Metals, Heavy/analysis , Ultrafiltration , Wastewater , Water Pollutants, Chemical/analysis
16.
Comb Chem High Throughput Screen ; 25(7): 1167-1180, 2022.
Article in English | MEDLINE | ID: mdl-34579629

ABSTRACT

The enhanced applications of Schiff bases metal complexes of amino acid derivatives have captured the attention of researchers for the synthesis of leucine derivatives of Schiff bases metal complexes. Amino acids are considered to be essential part of food supplements as well as derivatives of Schiff bases in coordination chemistry due to their donor ability. The leucine derivatives Schiff bases ligand have been synthesized by condensation reaction between amine of leucine with aldehyde or ketone bearing molecules attached with them. These complexes were characterized by different spectroscopic tools in order to confirm their structural geometries. The structural geometries are considered to be very important in order to improve the antimicrobial potential of leucine derivative metal complexes. By taking into account the antimicrobial potential of titled compounds, a comprehensive review of leucine derivatives of Schiff bases metal complexes has been compiled.


Subject(s)
Anti-Infective Agents , Coordination Complexes , Amines , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Leucine , Microbial Sensitivity Tests , Schiff Bases/chemistry , Schiff Bases/pharmacology
17.
Beilstein J Nanotechnol ; 12: 624-632, 2021.
Article in English | MEDLINE | ID: mdl-34285865

ABSTRACT

Silver nanowires (AgNWs) with ultrahigh purity and high yield were successfully synthesized by employing a modified facile polyol method using PVP as a capping and stabilizing agent. The reaction was carried out at a moderate temperature of 160 °C under mild stirring for about 3 h. The prepared AgNWs exhibited parallel alignment on a large scale and were characterized by UV-vis spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and PL spectroscopy. The luminescent AgNWs exhibited red emission, which was accredited to deep holes. The SEM results confirmed the formation of AgNWs of 3.3 to 4.7 µm in length with an average diameter of about 86 nm, that is, the aspect ratio values of the AgNWs exceeded 45. An ink consisting of hydroxyethyl cellulose (HEC) and AgNWs was transferred to polyethylene terephthalate (PET) films by simple mechanical pressing. The PET films retained transparency and flexibility after the ink coating. The maximum transmittance value of as-prepared PET films in the visible region was estimated to be about 92.5% with a sheet resistance value of ca. 20 Ω/sq. This makes the films a potential substitute to commonly used expensive indium tin oxide (ITO) in the field of flexible optoelectronics.

18.
Sci Total Environ ; 740: 140054, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-32562988

ABSTRACT

COVID-19 seems as global emergency, by infectious virus, caused respiratory illness like having symptoms of flue, sickness, headache, and difficulty in breathing. Within months the world has been transformed into new order, thousands of people died and many more are fallen ill due to COVID-19 outbreak. China was the first country to see the outbreak and the first country to control it. However, the disease has broken out in Europe, the Middle East, the United States and other places. The United States has the highest number of cases in the world.


Subject(s)
Coronavirus Infections , Public Health , Betacoronavirus , COVID-19 , China , Europe , Humans , Middle East , Pandemics , Pneumonia, Viral , SARS-CoV-2 , United States
19.
Environ Sci Pollut Res Int ; 26(11): 10515-10528, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30835072

ABSTRACT

Heavy metals are discharged into aquatic environment and causes serious problems to the environment, human's health, and other organisms. The industrial effluents contain high concentration of heavy metals that should be treated by different technologies. Numerous technologies have been widely used for the remediation of heavy metals such as chemical precipitation, ion exchange, membrane filtration, adsorption, coagulation-flocculation, floatation, electrochemical treatment, bioremediation, and photocatalysis. Among these technologies, photocatalysis has gained much attention due to chemical, physical, and electrical properties of heterogeneous semiconductor nano-photocatalysis. Bismuth vanadate is an n-type semiconductor photocatalyst having 2.4 eV band gap that was widely used from several decades having three monoclinic, tetragonal, and tetragonal zircon structures, but it also have some limitation that can be overcome by modification with metals or non-metals to gain high removal efficiency of heavy metals. This modification can tune its photocatalytic properties like band gap, absorption capacity, and surface area resulting in high photocatalytic performance towards heavy metals detoxification.


Subject(s)
Metals, Heavy/chemistry , Nanotechnology/methods , Photochemistry/methods , Water Pollutants, Chemical/chemistry , Bismuth/chemistry , Vanadates/chemistry
20.
Langmuir ; 34(36): 10603-10612, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30109940

ABSTRACT

To overcome the increased disease rate, utilization of the versatile broad spectrum antibiotic drugs in controlled drug-delivery systems has been a challenging and complex consignment. However, with the development of microemulsion (µE)-based formulations, drugs can be effectively encapsulated and transferred to the target source. Herein, two biocompatible oil-in-water (o/w) µE formulations comprising clove oil/Tween 20/ethylene glycol/water (formulation A) and clove oil/Tween 20/1-butanol/water (formulation B) were developed for encapsulating the gatifloxacin (GTF), a fourth-generation antibiotic. The pseudoternary phase diagrams were mapped at a constant surfactant/co-surfactant (1:1) ratio to bound the existence of a monophasic isotropic region for as-formulated µEs. Multiple complementary characterization techniques, namely, conductivity (σ), viscosity (η), and optical microscopy analyses, were used to study the gradual changes that occurred in the microstructure of the as-formulated µEs, indicating the presence of a percolation transformation to a bicontinuous permeate flow. GTF showed good solubility, 3.2 wt % at pH 6.2 and 4.0 wt % at pH 6.8, in optimum µE of formulation A and formulation B, respectively. Each loaded µE formulation showed long-term stability over 8 months of storage. Moreover, no observable aggregation of GTF was found, as revealed by scanning transmission electron microscopy and peak-to-peak correlation of IR analysis, indicating the stability of GTF inside the formulation. The average particle size of each µE, measured by dynamic light scattering, increased upon loading GTF, intending the accretion of drug in the interfacial layers of microdomains. Likewise, fluorescence probing sense an interfacial hydrophobic environment to GTF molecules in any of the examined formulations, which may be of significant interest for understanding the kinetics of drug release.


Subject(s)
Anti-Bacterial Agents/chemistry , Drug Carriers/chemistry , Drug Compounding , Emulsions/chemistry , Gatifloxacin/chemistry , 1-Butanol/chemistry , Clove Oil/chemistry , Drug Liberation , Ethylene Glycol/chemistry , Particle Size , Phase Transition , Polysorbates/chemistry , Solubility , Viscosity , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...