Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
eNeuro ; 9(1)2022.
Article in English | MEDLINE | ID: mdl-35027446

ABSTRACT

Adult neural stem cells (NSCs) reside in two distinct niches in the mammalian brain, the ventricular-subventricular zone (V-SVZ) of the forebrain lateral ventricles and the subgranular zone (SGZ) of the hippocampal dentate gyrus. They are thought to be molecularly distinct since V-SVZ NSCs produce inhibitory olfactory bulb (OB) interneurons and SGZ NSCs excitatory dentate granule neurons. Here, we have asked whether this is so by directly comparing V-SVZ and SGZ NSCs from embryogenesis to adulthood using single-cell transcriptional data. We show that the embryonic radial glial precursor (RP) parents of these two NSC populations are very similar, but differentially express a small cohort of genes involved in glutamatergic versus GABAergic neurogenesis. These different RPs then undergo a similar gradual transition to a dormant adult NSC state over the first three postnatal weeks. This dormancy state involves transcriptional shutdown of genes that maintain an active, proliferative, prodifferentiation state and induction of genes involved in sensing and regulating their niche environment. Moreover, when reactivated to generate adult-born progeny, both populations reacquire a development-like state and re-express proneurogenic genes. Thus, V-SVZ and SGZ NSCs share a common transcriptional state throughout their lifespans and transition into and out of dormancy via similar trajectories.


Subject(s)
Neural Stem Cells , Adult , Animals , Dentate Gyrus , Embryonic Development , Humans , Lateral Ventricles , Mammals , Neurogenesis/physiology , Prosencephalon
2.
Cell Rep ; 32(6): 108022, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32783944

ABSTRACT

The transitions from developing to adult quiescent and activated neural stem cells (NSCs) are not well understood. Here, we use single-cell transcriptional profiling and lineage tracing to characterize these transitions in the murine forebrain. We show that the two forebrain NSC parental populations, embryonic cortex and ganglionic eminence radial precursors (RPs), are highly similar even though they make glutamatergic versus gabaergic neurons. Both RP populations progress linearly to transition from a highly active embryonic to a dormant adult stem cell state that still shares many similarities with embryonic RPs. When adult NSCs of either embryonic origin become reactivated to make gabaergic neurons, they acquire a developing ganglionic eminence RP-like identity. Thus, transitions from embryonic RPs to adult NSCs and back to neuronal progenitors do not involve fundamental changes in cell identity, but rather reflect conversions between activated and dormant NSC states that may be determined by the niche environment.


Subject(s)
Neural Stem Cells/metabolism , Neurogenesis/genetics , Prosencephalon/physiopathology , Animals , Cell Differentiation , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...