Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 60(24): 19035-19043, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34846888

ABSTRACT

In this study, we synthesized and characterized two nickel complexes featuring conformationally rigid bisphosphine mono-oxide ligands, where one has an o-methoxyphenyl (Ni2) and the other has an o-(2-methoxyethoxy)phenyl (Ni3) substituent on the P═O moiety. We performed metal binding studies using Ni3 and found that its reaction with Li+ and Na+ most likely produced 1:1 and 1:1/2:1 nickel:alkali species in solution, respectively. The nickel complexes were competent catalysts for ethylene homopolymerization and copolymerization, with activities up to 3.8 × 103 and 8.1 × 10 kg mol-1 h-1, respectively. In reactions of ethylene with methyl acrylate (1.0 M), the addition of Li+ to Ni3 led to a 5.4-fold enhancement in catalyst activity and a 1.9-fold increase in polar monomer incorporation in comparison to those by Ni3 alone under optimized conditions. A comparison with other nickel catalysts reported for ethylene and methyl acrylate copolymerization revealed that our nickel-alkali catalysts are competitive with some of the most efficient Ni-based systems developed thus far.

2.
Dalton Trans ; 48(19): 6445-6454, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31017171

ABSTRACT

Iodine functionalized variants of DUT-5 (Al) and UiO-67 (Zr) were prepared as expanded-pore analogues of MIL-53 (Al) and UiO-67 (Zr). They were prepared using a combination of multivariate and isorecticular expansion strategies. Multivariate MOFs with a 25% iodine-containing linker was chosen to achieve an ideal balance between a high density of catalytic sites and sufficient space for efficient diffusion. Changes to the oxidation potential of the catalyst as a result of the pore-expansion strategy led to a decrease in activity with electron rich substrates. On the other hand, these larger frameworks proved to be more efficient catalysts for substrates with higher oxidation potentials. Recyclability tests for these larger MOFs showed sustained catalytic activity over multiple recycles.

3.
Photochem Photobiol ; 92(6): 783-789, 2016 11.
Article in English | MEDLINE | ID: mdl-27861966

ABSTRACT

Visible light-driven Al-doped TiO2 with different aluminum contents (2, 5 and 10 mol%) were synthesized via a facile sol-gel method. Fourier transform infrared (FTIR), UV-visible diffuse reflectance, energy dispersive X-ray (EDX) spectroscopy as well as X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy (SEM) methods were used for the characterization of the obtained nanoparticles. The photocatalytic performance of the samples was evaluated by the degradation of rhodamine B (RhB) under visible light irradiation. The yield of the degradation RhB was estimated to be 71%, 89%, 65% and 56%, for the bare TiO2 , 2%, 5% and 10% Al-doped TiO2 , respectively. It was found that 2 mol% of Al-doped TiO2 shows the best photocatalytic performance. In low concentration of dopant, separation of photogenerated electron-hole pairs promoted, and subsequently, the degradation efficiency increased. It was proposed that the degradation of RhB by 2 mol% Al-doped TiO2 photocatalyst follows both N-deethylation and chromophore cleavage mechanisms, while the N-deethylation still predominated over cleavage of dye chromophore structure. The key role of hydroxyl radicals in RhB degradation was verified by the effects of scavengers. In addition, the photocatalyst can be reused for three runs without any significant loss of its catalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...