Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 12: 1398659, 2024.
Article in English | MEDLINE | ID: mdl-38938986

ABSTRACT

Introduction: In an effort of gaining a better understanding of the lens mechanics, ex vivo lenses samples are often used. Yet, ex vivo tissue might undergo important postmortem changes depending on the unavoidable preservation method employed. The purpose of this study was to assess how various storage conditions and the removal of the lens capsule affect the mechanical properties of ex vivo porcine lens samples. Methods: A total of 81 freshly enucleated porcine eyes were obtained and divided into six groups and preserved differently. In the first three groups, the lens within the intact eye was preserved for 24 h by: (i) freezing at -80°C (n = 12), (ii) freezing at -20°C (n = 12), and (iii) refrigeration at +8°C (n = 12). In the remaining groups, the lenses were immediately extracted and treated as follows: (iv) kept intact, no storage (n = 12), (v) decapsulated, no storage (n = 21), and (vi) immersed in Minimum Essential Medium (MEM) at +8°C (n = 12) for 24 h. Frozen lenses were thawed at room temperature. Each lens was compressed between two glass lamella and subjected, first to a period of relaxation during which the compression force was recorded and second to an oscillating micro-compression while the deformation was recorded with a total of 256 subsequent B-scans via optical coherence tomography. The corresponding axial strain was retrieved via phase-sensitive image processing and subsequently used as input for an inverse finite element analysis (iFEA) to retrieve the visco-hyperelastic material properties of the lenses. Results: After freezing at temperatures of -80°C and -20°C, the cortical strains increased by 14% (p = 0.01) and 34% (p < 0.001), and the nuclear strains decreased by 17% (p = 0.014) and 36% (p < 0.001), compared to the lenses tested immediately after postmortem, respectively. According to iFEA, this resulted from an increased ratio of the nuclear: cortical E-modulus (4.06 and 7.06) in -80°C and -20°C frozen lenses compared to fresh lenses (3.3). Decapsulation had the largest effect on the material constant C10, showing an increase both in the nucleus and cortex. Preservation of the intact eye in the refrigerator induced the least mechanical alterations in the lens, compared to the intact fresh condition. Discussion: Combining iFEA with optical coherence elastography allowed us to identify important changes in the lens mechanics induced after different preserving ex vivo methods.

2.
Exp Eye Res ; 233: 109558, 2023 08.
Article in English | MEDLINE | ID: mdl-37385534

ABSTRACT

The mechanical properties of the crystalline lens are crucial in determining the changes in lens shape that occur during the accommodation process and are also a major factor in the development of the two most prevalent age-related diseases of the lens, presbyopia and cataracts. However, a comprehensive understanding of these properties is currently lacking. Previous methods for characterizing the mechanical properties of the lens have been limited by the amount of data that could be collected during each test and the lack of complex material modeling. These limitations were mainly caused by the lack of imaging techniques that can provide data for the entire crystalline lens and the need for more complex models to describe the non-linear behavior of the lens. To address these issues, we characterized the mechanical properties of 13 porcine lenses during an ex vivo micro-controlled-displacement compression experiment using optical coherence elastography (OCE) and inverse finite element analysis (iFEA). OCE allowed us to quantify the internal strain distribution of the lens and differentiate between the different parts of the lens, while iFEA enabled us to implement an advanced material model to characterize the viscoelasticity of the lens nucleus and the relative stiffness gradient in the lens. Our findings revealed a pronounced and rapid viscoelastic behavior in the lens nucleus (g1 = 0.39 ± 0.13, τ1 = 5.01 ± 2.31 s) and identified the lens nucleus as the stiffest region, with a stiffness 4.42 ± 1.20 times greater than the anterior cortex and 3.47 ± 0.82 times greater than the posterior cortex. However, due to the complex nature of lens properties, it may be necessary to employ multiple tests simultaneously for a more comprehensive understanding of the crystalline lens.


Subject(s)
Elasticity Imaging Techniques , Lens, Crystalline , Animals , Swine , Finite Element Analysis , Lens, Crystalline/diagnostic imaging , Accommodation, Ocular , Lens Nucleus, Crystalline
SELECTION OF CITATIONS
SEARCH DETAIL
...