Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 13(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37443612

ABSTRACT

The emergence of COVID-19 has caused unprecedented impacts on global public health and many other aspects. Meanwhile, many types of methods have been developed to detect the causative agent, SARS-CoV-2; this has greatly advanced the technologies in the diagnostic field. Here, we describe the development and validation of a sample-in-result-out POCKIT Central SARS-CoV-2 PCR system for detecting SARS-CoV-2 in comparison with a commercial reference real-time RT-PCR assay (TaqPath COVID-19 Combo Kit). Both assays were specific and did not cross-react with non-SARS-CoV-2 agents. Both assays were able to detect various SARS-CoV-2 strains including some variants. Based on testing serial dilutions of SARS-CoV-2 USA-WA1/2020 isolate, the limit of detection was 0.8 TCID50/mL (1.87 × 103 genomic copies/mL) for POCKIT Central SARS-CoV-2 PCR and 0.16 TCID50/mL (3.75 × 102 genomic copies/mL) for the reference PCR. Subsequently, 183 clinical samples were tested by both assays and the diagnostic sensitivity, specificity, and agreement of the POCKIT Central SARS-CoV-2 PCR were 91.7%, 100%, and 94.0%, respectively, when compared to the reference PCR. The compact sample-to-result POCKIT Central SARS-CoV-2 PCR system is a simplified and efficient point-of-care tool for SARS-CoV-2 detection. In addition, this platform can be readily adapted to detect other human and animal viruses.

2.
Plant Dis ; 104(5): 1318-1327, 2020 May.
Article in English | MEDLINE | ID: mdl-32181724

ABSTRACT

A new begomovirus, tentatively named hibiscus yellow vein leaf curl virus (HYVLCV), was identified in Hibiscus rosa-sinensis plants showing symptoms of leaf curl, yellow vein, and vein enation on the undersides of the leaf in Taiwan. Sequence analysis of the full-length HYVLCV genome from the rolling cycle amplicon revealed a genome of 2,740 nucleotides that contains six open reading frames and a conserved sequence (5'-TAATATTAC-3') commonly found in geminiviral genomes. HYVLCV shares the highest nucleotide identity (88.8%) with cotton leaf curl Multan virus (CLCuMuV) genome, which is lower than the criteria (91%) set for species demarcation in the genus Begomovirus. No begomoviral DNA-B was detected; however, a begomovirus-associated DNA betasatellite (DNA-ß) was detected. The DNA-ß (1,355 nucleotides) shares the highest nucleotide identity (78.6%) with malvastrum yellow vein betasatellite (MaYVB). Because the identity is slightly higher than the criteria (78%) set for the species demarcation threshold for a distinct DNA-ß species, the DNA-ß of HYVLCV reported in this study is considered the same species of MaYVB and tentatively named MaYVB-Hib. An expected 1,498-bp fragment was amplified with two HYVLCV-specific primers from 10 of 11 field-collected samples. Four independent amplicons were sequenced, revealing 100% nucleotide identity with the HYVLCV genome. Agroinoculation of a dimer of the infectious monopartite genome alone to Nicotiana benthamiana resulted in mild symptoms at 28 days postinoculation (dpi); coagroinoculation with the DNA-ß satellite resulted in severe symptoms at 12 dpi. HYVLCV could be transmitted to healthy H. rosa-sinensis by grafting, resulting in yellow vein symptoms at 30 dpi.


Subject(s)
Begomovirus , Hibiscus , Rosa , Genome, Viral , Phylogeny , Plant Diseases , Sequence Analysis, DNA , Taiwan
3.
Plant Dis ; 103(7): 1605-1612, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30998416

ABSTRACT

Dendrobium smillieae is one of the popular orchids in Taiwan. This report describes a new potyvirus tentatively named Dendrobium chlorotic mosaic virus (DeCMV) causing chlorotic and mosaic symptoms in D. smillieae. Enzyme-linked immunosorbent assay (ELISA) tests using six antisera against orchid-infecting viruses revealed that only a monoclonal antibody against the potyvirus group reacted positively with crude saps prepared from a symptomatic dendrobium orchid. Potyvirus-like, flexuous, filamentous particles were observed under an electron microscope, measuring approximately 700 to 800 nm in length and 11 to 12 nm in diameter. Sequence analyses revealed that DeCMV coat protein gene shared 59.6 to 66.0% nucleotide sequence identity and 57.6 to 66.0% amino acid sequence identity, whereas the DeCMV complete genome shared 54.1 to 57.3% nucleotide sequence identity and 43.7 to 49.5% amino acid sequence identity with those other known potyviruses. These similarity levels were much lower than the criteria set for species demarcation in potyviruses. Thus, DeCMV can be considered a new potyvirus. The whole DeCMV genome contains 10,041 nucleotides (GenBank accession no. MK241979) and encodes a polyprotein that is predicted to produce 10 proteins by proteolytic cleavage. In a pathogenicity test, results of inoculation assays demonstrated that DeCMV can be transmitted to dendrobium orchids by grafting and mechanical inoculation, as verified by ELISA and western blot analyses using the DeCMV polyclonal antiserum and by reverse transcription polymerase chain reaction using the coat protein gene-specific primers. The inoculated orchids developed similar chlorotic and mosaic symptoms. In conclusion, DeCMV is a novel orchid-infecting potyvirus, and this is the first report of a new potyvirus that infects dendrobium orchids in Taiwan.


Subject(s)
Dendrobium , Potyvirus , Amino Acid Sequence , Dendrobium/virology , Fungal Proteins/chemistry , Fungal Proteins/genetics , Phylogeny , Potyvirus/classification , Potyvirus/genetics , Taiwan
4.
Arch Virol ; 162(7): 2109-2113, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28260140

ABSTRACT

Pepper chlorotic spot virus (PCSV), newly found in Taiwan, was identified as a new tospovirus based on the molecular characterization of its S RNA. In this study, the complete M and L RNA sequences of PCSV were determined. The M RNA has 4795 nucleotides (nts), encoding the NSm protein of 311 aa (34.5 kDa) in the viral (v) strand and the glycoprotein precursor (Gn/Gc) of 1122 aa (127.6 kDa) in the viral complementary (vc) strand. The L RNA has 8859 nts, encoding the RNA-dependent RNA polymerase (RdRp) of 2873 aa (330.8 kDa) in the vc strand. Analyses of the NSm, Gn/Gc and RdRp of PCSV revealed that PCSV is phylogenetically clustered within the watermelon silver mottle virus-related clade. Based on the whole genome sequence, PCSV is closely related to Tomato necrotic ringspot virus and should be classified as a new tospovirus species.


Subject(s)
Piper nigrum/virology , Plant Diseases/virology , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Tospovirus/classification , Amino Acid Sequence , Solanum lycopersicum/virology , Phylogeny , Taiwan , Tospovirus/genetics , Tospovirus/isolation & purification , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...