Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 22(25): 254030, 2011 Jun 24.
Article in English | MEDLINE | ID: mdl-21572209

ABSTRACT

We have presented a systematical study of the domain nucleation and growth behaviors in multiferroic BiFeO(3) (BFO) films. Both the ferroelectric and the ferroelastic switching dynamics were investigated. Several environmental parameters, including the polarization orientations, the monodomain-like matrix, and the ordered domain walls as local boundaries, were well controlled by thin-film strain engineering through changing the vicinal angles of the substrates. The tip-based domain dynamics was studied by subsequent piezoresponse force microscope (PFM) imaging of the domain evolution under external voltage pulses. For the nanodomains written in the monodomain-like environment, the domain wall performed the thermal activated motion. The as-grown 71° domain walls can act as pinning centers for the ferroelectric domain growth driven by low fields; moreover, ferroelastic nucleation near a 71° domain wall will cause the deformation of the domain wall. The ferroelastic domain growth possessed relatively small activation fields, and therefore usually performed non-activated motion. This study revealed the effects of local environments on the dynamics forming nanoscale domains, and opened a pathway for applications in novel non-volatile functional devices.

2.
ACS Nano ; 5(2): 879-87, 2011 Feb 22.
Article in English | MEDLINE | ID: mdl-21214267

ABSTRACT

Using a combination of piezoresponse force microscopy (PFM) and phase-field modeling, we demonstrate ubiquitous formation of center-type and possible ferroelectric closure domain arrangements during polarization switching near the ferroelastic domain walls in (100) oriented rhombohedral BiFeO(3). The formation of these topological defects is determined from the vertical and lateral PFM data and confirmed from the reversible changes in surface topography. These observations provide insight into the mechanisms of tip-induced ferroelastic domain control and suggest that formation of topological defect states under the action of local defect- and tip-induced fields is much more common than previously believed.

SELECTION OF CITATIONS
SEARCH DETAIL
...