Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 14(11): e0008842, 2020 11.
Article in English | MEDLINE | ID: mdl-33206649

ABSTRACT

Trichinella spiralis muscle stage larvae (mL1) produce excretory-secreted products (ESPs), a complex mixture of protein, which are believed to be important for establishing or maintaining an infection niche within skeletal muscle and the intestine. Studies of both whole ESPs and individual cloned proteins have shown that some ESPs are potent immunogens capable of eliciting protective immune responses. Here we describe two novel proteins, Secreted from Muscle stage Larvae SML-4 and SML-5 which are 15 kDa and 12 kDa respectively. The genes encoding these proteins are highly conserved within the Trichinellids, are constituents of mL1 ESP and localized in the parasite stichosome. While SML-5 is only expressed in mL1 and early stages of adult nematode development, SML-4 is a tyvosylated glycoprotein also produced by adult nematodes, indicating it may have a function in the enteral phase of the infection. Vaccination with these proteins resulted in an impaired establishment of adult stages and consequently a reduction in the burden of mL1 in BALB/c mice. This suggests that both proteins may be important for establishment of parasite infection of the intestine and are prophylactic vaccine candidates.


Subject(s)
Antibodies, Helminth/immunology , Antigens, Helminth/immunology , Helminth Proteins/immunology , Protozoan Vaccines/immunology , Trichinella spiralis/immunology , Trichinellosis/prevention & control , Animals , Female , Larva/immunology , Mice , Mice, Inbred BALB C , Muscles/parasitology , Rats , Rats, Sprague-Dawley , Th1 Cells/immunology , Th2 Cells/immunology , Trichinellosis/immunology , Vaccination , Vaccines, Synthetic/immunology
2.
Exp Hematol ; 76: 38-48.e2, 2019 08.
Article in English | MEDLINE | ID: mdl-31295506

ABSTRACT

A better understanding of the development and progression of acute myelogenous leukemia (AML) is necessary to improve patient outcome. Here we define roles for the transcription factor Oct1/Pou2f1 in AML and normal hematopoiesis. Inappropriate reactivation of the CDX2 gene is widely observed in leukemia patients and in leukemia mouse models. We show that Oct1 associates with the CDX2 promoter in both normal and AML primary patient samples, but recruits the histone demethylase Jmjd1a/Kdm3a to remove the repressive H3K9me2 mark only in malignant specimens. The CpG DNA immediately adjacent to the Oct1 binding site within the CDX2 promoter exhibits variable DNA methylation in healthy control blood and bone marrow samples, but complete demethylation in AML samples. In MLL-AF9-driven mouse models, partial loss of Oct1 protects from myeloid leukemia. Complete Oct1 loss completely suppresses leukemia but results in lethality from bone marrow failure. Loss of Oct1 in normal hematopoietic transplants results in superficially normal long-term reconstitution; however, animals become acutely sensitive to 5-fluorouracil, indicating that Oct1 is dispensable for normal hematopoiesis but protects blood progenitor cells against external chemotoxic stress. These findings elucidate a novel and important role for Oct1 in AML.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Neoplasm Proteins/physiology , Octamer Transcription Factor-1/physiology , Animals , Bone Marrow/pathology , Bone Marrow Failure Disorders/etiology , Bone Marrow Failure Disorders/genetics , CDX2 Transcription Factor/biosynthesis , CDX2 Transcription Factor/genetics , Cell Transformation, Neoplastic/genetics , CpG Islands , DNA Methylation , Disease Progression , Fluorouracil/toxicity , Gene Expression Regulation, Leukemic , Hematopoietic Stem Cells/drug effects , Humans , Jumonji Domain-Containing Histone Demethylases/metabolism , Leukemia, Experimental/genetics , Leukemia, Experimental/prevention & control , Leukemia, Myeloid, Acute/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mice, Inbred C57BL , Octamer Transcription Factor-1/deficiency , Oncogene Proteins, Fusion/physiology , Promoter Regions, Genetic , Radiation Chimera
3.
Cancer Res ; 76(7): 1916-25, 2016 04 01.
Article in English | MEDLINE | ID: mdl-26795348

ABSTRACT

The findings from genome-wide association studies hold enormous potential for novel insight into disease mechanisms. A major challenge in the field is to map these low-risk association signals to their underlying functional sequence variants (FSV). Simple sequence study designs are insufficient, as the vast numbers of statistically comparable variants and a limited knowledge of noncoding regulatory elements complicate prioritization. Furthermore, large sample sizes are typically required for adequate power to identify the initial association signals. One important question is whether similar sample sizes need to be sequenced to identify the FSVs. Here, we present a proof-of-principle example of an extreme discordant design to map FSVs within the 2q33 low-risk breast cancer locus. Our approach employed DNA sequencing of a small number of discordant haplotypes to efficiently identify candidate FSVs. Our results were consistent with those from a 2,000-fold larger, traditional imputation-based fine-mapping study. To prioritize further, we used expression-quantitative trait locus analysis of RNA sequencing from breast tissues, gene regulation annotations from the ENCODE consortium, and functional assays for differential enhancer activities. Notably, we implicate three regulatory variants at 2q33 that target CASP8 (rs3769823, rs3769821 in CASP8, and rs10197246 in ALS2CR12) as functionally relevant. We conclude that nested discordant haplotype sequencing is a promising approach to aid mapping of low-risk association loci. The ability to include more efficient sequencing designs into mapping efforts presents an opportunity for the field to capitalize on the potential of association loci and accelerate translation of association signals to their underlying FSVs. Cancer Res; 76(7); 1916-25. ©2016 AACR.


Subject(s)
Breast Neoplasms/genetics , Genetic Variation/genetics , Breast Neoplasms/pathology , Female , Genetic Predisposition to Disease , Haplotypes , Humans , Polymorphism, Single Nucleotide , Risk
4.
Vet Ophthalmol ; 18(4): 261-70, 2015 Jul.
Article in English | MEDLINE | ID: mdl-24814303

ABSTRACT

OBJECTIVE: To test the hypothesis that oxidative stress occurs early in the pathogenesis of glaucoma in dogs. ANIMALS: Sections from eight control retinas and 25 retinas from dogs with primary glaucoma. METHODS: For retinas embedded in paraffin, sections were immunohistochemically stained for malondialdehyde (MDA) and 3-nitrotyrosine (NT). For retinas embedded in plastic, serial 0.5-µm sections were immunogold-stained for total glutathione, taurine, and glutamate. RESULTS: Increased immunostaining for MDA and NT, markers of oxidative stress, occurred in retinal ganglion cells (RGCs) and other neurons in acute glaucoma, but not in chronic glaucoma. In minimally damaged regions, immunostaining for the antioxidant glutathione was decreased in RGCs, neurons of the inner nuclear layer (INL), and Müller cell processes. The loss of glutathione immunostaining in RGCs occurred without a decrease in glutamate immunostaining. Neurons with nuclear damage in the INL had low levels of glutathione, taurine, and glutamate. In severely damaged regions, immunostaining for glutathione was increased in the remaining retinal tissue. CONCLUSIONS: Immunohistochemical staining revealed an increase in markers of oxidative stress and loss of glutathione in neurons with minimal damage during acute glaucoma. Oxidative changes were no longer present in chronic glaucomatous retinas, suggesting transient oxidative stress occurs early in glaucoma. The loss of glutathione in minimally damaged regions occurred without a significant redistribution of glutamate, suggesting oxidative stress may occur before glutamate redistribution. Alteration in markers of oxidative stress occurs early in canine glaucoma, suggesting oxidative stress may contribute to subsequent glutamate redistribution and other damaging processes.


Subject(s)
Dog Diseases/metabolism , Glaucoma/veterinary , Oxidative Stress , Retina/metabolism , Acute Disease , Animals , Case-Control Studies , Chronic Disease , Dog Diseases/pathology , Dogs , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Glaucoma/metabolism , Glaucoma/pathology , Glutathione/metabolism , Retina/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...