Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 23(7): 2441-2451, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38833655

ABSTRACT

Global profiling of single-cell proteomes can reveal cellular heterogeneity, thus benefiting precision medicine. However, current mass spectrometry (MS)-based single-cell proteomic sample processing still faces technical challenges associated with processing efficiency and protein recovery. Herein, we present an innovative sample processing platform based on a picoliter single-cell reactor (picoSCR) for single-cell proteome profiling, which involves in situ protein immobilization and sample transfer. PicoSCR helped minimize surface adsorptive losses by downscaling the processing volume to 400 pL with a contact area of less than 0.4 mm2. Besides, picoSCR reached highly efficient cell lysis and digestion within 30 min, benefiting from optimal reagent and high reactant concentrations. Using the picoSCR-nanoLC-MS system, over 1400 proteins were identified from an individual HeLa cell using data-dependent acquisition mode. Proteins with copy number below 1000 were identified, demonstrating this system with a detection limit of 1.7 zmol. Furthermore, we profiled the proteome of circulating tumor cells (CTCs). Data are available via ProteomeXchange with the identifier PXD051468. Proteins associated with epithelial-mesenchymal transition and neutrophil extracellular traps formation (which are both related to tumor metastasis) were observed in all CTCs. The cellular heterogeneity was revealed by differences in signaling pathways within individual cells. These results highlighted the potential of the picoSCR platform to help discover new biomarkers and explore differences in biological processes between cells.


Subject(s)
Proteome , Proteomics , Single-Cell Analysis , Humans , Single-Cell Analysis/methods , HeLa Cells , Proteome/analysis , Proteome/metabolism , Proteomics/methods , Epithelial-Mesenchymal Transition , Bioreactors
2.
ACS Appl Mater Interfaces ; 16(23): 29634-29644, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38822821

ABSTRACT

Efficient protection and precise delivery of biomolecules are of critical importance in the intervention and therapy of various diseases. Although diverse specific marker-functionalized drug carriers have been developed rapidly, current approaches still encounter substantial challenges, including strong immunogenicity, limited target availability, and potential side effects. Herein, we developed a biomimetic exosome-sheathed magnetic mesoporous anchor modified with glucose oxidase (MNPs@mSiO2-GOx@EM) to address these challenges and achieve synergistic targeting and starving of tumor cells. The MNPs@mSiO2-GOx@EM anchor integrated the unique characteristics of different components. An external decoration of exosome membrane (EM) with high biocompatibility contributed to increased phagocytosis prevention, prolonged circulation, and enhanced recognition and cellular uptake of loaded particles. An internal coated magnetic mesoporous core with rapid responsiveness by the magnetic field guidance and large surface area facilitated the enrichment of nanoparticles at the specific site and provided enough space for modification of glucose oxidase (GOx). The inclusion of GOx in the middle layer accelerated the energy-depletion process within cells, ultimately leading to the starvation and death of target cells with minimal side effects. With these merits, in vitro study manifested that our nanoplatform not only demonstrated an excellent targeting capability of 94.37% ± 1.3% toward homotypic cells but also revealed a remarkably high catalytical ability and cytotoxicity on tumor cells. Assisted by the magnetic guidance, the utilization of our anchor obviously inhibits the tumor growth in vivo. Together, our study is promising to serve as a versatile method for the highly efficient delivery of various target biomolecules to intended locations due to the fungibility of exosome membranes and provide a potential route for the recognition and starvation of tumor cells.


Subject(s)
Biomimetic Materials , Exosomes , Glucose Oxidase , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Exosomes/metabolism , Exosomes/chemistry , Animals , Humans , Mice , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Porosity , Magnetite Nanoparticles/chemistry , Cell Line, Tumor , Silicon Dioxide/chemistry , Drug Carriers/chemistry , Mice, Inbred BALB C
3.
ACS Nano ; 17(23): 23924-23935, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38039354

ABSTRACT

Exosome metabolite-based noninvasive liquid biopsy is an emerging research hotspot that tends to substitute current means in clinics. Nanostructure-based mass spectrometry enables continuous exosome isolation and metabolic profiling with superior analysis speed and high efficiency. Herein, we construct a heterogeneous MXene hybrid that possesses ternary binding sites for exosome capture and outstanding matrix performance for metabolite analysis. Upon optimizing experimental conditions, the average extraction of exosomes and their metabolic patterns from a 60 mL urine sample is completed within 45 s (40 samples per batch for 30 min). According to the exosomal metabolic patterns and the subsequently established biomarker panel, we distinguish early bladder cancer (BCa) from healthy controls with an area under the curve (AUC) value greater than 0.995 in model training and validation sets. As well, we realize subtype classification of BCa in the blind test on metabolic patterns, with an AUC value of 0.867. We also explore the significant biomarkers that are sensitive to follow-up patients, which indeed present reverse change levels compared with pathological progression. This study has the potential to guide the development of the liquid biopsy approach.


Subject(s)
Exosomes , Urinary Bladder Neoplasms , Humans , Exosomes/metabolism , Follow-Up Studies , Early Detection of Cancer , Urinary Bladder Neoplasms/pathology , Biomarkers/analysis , Biomarkers, Tumor/analysis
4.
Anal Chem ; 95(35): 13113-13122, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37609888

ABSTRACT

From metabolic waste to biological mediators, exosomes have emerged as the key player in a variety of pathological processes, particularly in oncogenesis. The exosome-mediated communication network involves nearly every step of cancer progression, promoting the proliferation and immune escape of cancer cells. Therefore, the removal of cancer-derived exosomes has profound clinical significance. Current methods for exosome separation and enrichment are either for large-scale samples or require complex pretreatment processes, lacking effective methods for trace-volume exosome capture in situ. Herein, we have developed an in situ exosome capturing and counting device based on the antibody-functionalized capillary. Specific antibodies targeting exosome biomarkers were immobilized to the inner wall of the capillary via biotin-streptavidin interaction for direct cancer exosome capturing. Subsequent exosome staining enabled imaging and enumeration. Acceptable linearity and reproducibility were achieved with our device, with the capturing and detective range between 3.3 × 104 and 3.3 × 108 particles, surpassing the nanoparticle tracking analysis by 2 orders of magnitude while requiring merely 30 µL sample. We demonstrated that MCF-7-derived exosomes induced epithelial-mesenchymal transition of epithelial cells MCF-10A, and our method was able to completely or partially reverse the transition by complete depletion or specific depletion of cancer exosomes without any preprocessing. Moreover, both whole exosomes and cancer-specific exosomes alone from mimic blood samples were successfully captured and counted, without obvious non-specific adsorption. In all, our approach realized the in situ depletion and number-counting of cancer-derived exosomes directly from the complex humoral environment, having the potential to provide a comprehensive tumor therapeutic and prognosis evaluation tool by targeted hemodialysis and counting of tumor-derived exosomes.


Subject(s)
Exosomes , Neoplasms , Humans , Reproducibility of Results , Carcinogenesis , Adsorption , Antibodies
5.
J Chromatogr A ; 1700: 464048, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37167805

ABSTRACT

Liquid chromatography-mass spectrometry (LC-MS) is the method of choice for high-throughput proteomic research. Limited by the peak capacity, the separation performance of conventional single-dimensional LC hampers the development of proteomics. Combining different separation modes orthogonally, multidimensional liquid chromatography (MDLC) with high peak capacity was developed to address this challenge. MDLC has evolved rapidly since its establishment, and the progress of proteomics has been greatly facilitated by the advent of novel MDLC-MS-based methods. In this paper, we will review the advances of MDLC-MS-based methodologies and technologies in proteomics studies, from different perspectives including novel application scenarios and proteomic targets, automation, miniaturization, and the improvement of the classic methods in recent years. In addition, attempts regarding new MDLC-MS models are also mentioned together with the outlook of MDLC-MS-based proteomics methods.


Subject(s)
Proteome , Proteomics , Proteome/analysis , Proteomics/methods , Chromatography, Liquid/methods , Mass Spectrometry/methods , Automation
6.
Anal Chem ; 95(12): 5232-5239, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36913664

ABSTRACT

Circulating tumor cells (CTCs) are crucial in tumor progression and metastasis, but the knowledge of their roles grows slowly at single-cell levels. Characterizing the rarity and fragility of CTCs by nature, highly stable and efficient single-CTC sampling methods are still lacking, which impedes the development of single-CTC analysis. Herein, an improved, capillary-based single-cell sampling (SiCS) method, the so-called bubble-glue single-cell sampling (bubble-glue SiCS), is introduced. Benefiting from the characteristic that the cells tend to adhere to air bubbles in the solution, single cells can be sampled with bubbles as low as 20 pL with a self-designed microbubble-volume-controlled system. Benefiting from the excellent maneuverability, single CTCs are sampled directly from 10 µL volume of real blood samples after fluorescent labeling. Meanwhile, over 90% of the CTCs obtained survived and well proliferated after the bubble-glue SiCS process, which showed considerable superiority for downstream single-CTC profiling. Furthermore, a highly metastatic breast cancer model of the 4T1 cell line in vivo was employed for the real blood sample analysis. Increases in CTC numbers were observed during the tumor progression process, and significant heterogeneities among individual CTCs were discovered. In all, we propose a novel avenue for target SiCS and provide an alternative technique route for CTC separation and analysis.


Subject(s)
Breast Neoplasms , Neoplastic Cells, Circulating , Humans , Female , Neoplastic Cells, Circulating/pathology , Breast Neoplasms/pathology , Neoplasm Metastasis , Single-Cell Analysis/methods , Biomarkers, Tumor
7.
Anal Chem ; 94(34): 11925-11933, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35980697

ABSTRACT

Ultra-low-copy number proteins play a crucial role in exploring cellular heterogeneity and the insight of protein biomarkers in a single cell. However, counting ultra-low-copy number target proteins in a single cell remains a grand challenge. Herein, we developed a so-called single-cell picoliter liquid operating technology for counting target proteins in a single cell. An ingenious volume-controllable sampling technique was employed to capture a single cell for subsequent analysis. Remarkably, 50 pL of sample volume was employed for sample preparation, single-cell capture, in-droplet lysis, and target protein immobilization on a functionalized coverslip in a monolayer. Then, target protein antibodies coupled with quantum dots were added and incubated to label those immobilized proteins. After clean-up, a single-view image under 100× objective was taken, and the 80 × 80 µm2 view image was then applied to count the precise copy number of the target proteins in the single cell. Furthermore, good linearity and repeatability were achieved for ultra-low-copy number proteins, ranging from 1 to 1500. Finally, the expression level of human epidermal growth factor receptor 2 in single cells from both MCF-7 and MDA-MB-231 cell lines was also analyzed. In a word, this work stimulated the development of capillary-based single-cell analysis and updated the connotation of counting ultra-low-copy number proteins.


Subject(s)
Quantum Dots , Antibodies , Humans , Proteins/analysis , Single-Cell Analysis , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...