Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosci Biotechnol Biochem ; 85(5): 1235-1242, 2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33674867

ABSTRACT

The role of Fusobacterium nucleatum, often associated with intestinal diseases, in the remission of dextran sulfate sodium (DSS)-induced colitis was investigated. Female mice were divided into groups DC (DSS control) and DF (DSS + F. nucleatum). F. nucleatum (1.0 × 1010 cfu/mouse/day) in phosphate-buffered saline (PBS) was orally given to DF, while DC had PBS only. All mice had DSS in drinking water. In Experiment 1, mice underwent 2 inflammation phases, an in-between recovery phase and had their disease activity indices (DAI) calculated. Experiment 2 was similarly conducted, except that mice were dissected 3 days postrecovery, and had blood and colonic mucosal samples collected. In Experiment 1, DF had significantly (P < .05) higher DAI than DC, during the recovery and 2nd inflammation phases. In Experiment 2, genus Bacteroides was significantly (P < .05) higher and family Lachnospiraceae significantly lower in cecal mucosa-associated microbiota of DF than in that of DC. We concluded that F. nucleatum can impede colitis remission.


Subject(s)
Colitis/microbiology , Colon/microbiology , Fusobacterium nucleatum/pathogenicity , Intestinal Mucosa/microbiology , Actinobacteria/genetics , Actinobacteria/growth & development , Actinobacteria/isolation & purification , Animals , Bacteroidetes/genetics , Bacteroidetes/growth & development , Bacteroidetes/isolation & purification , Colitis/chemically induced , Colitis/pathology , Colon/pathology , Convalescence , Dextran Sulfate/administration & dosage , Disease Models, Animal , Female , Firmicutes/genetics , Firmicutes/growth & development , Firmicutes/isolation & purification , Fusobacterium nucleatum/growth & development , Fusobacterium nucleatum/isolation & purification , Gastrointestinal Microbiome/genetics , Intestinal Mucosa/pathology , Mice , Mice, Inbred C57BL , Permeability , Proteobacteria/genetics , Proteobacteria/growth & development , Proteobacteria/isolation & purification , RNA, Bacterial/genetics
2.
Biosci Biotechnol Biochem ; 83(7): 1343-1353, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31038020

ABSTRACT

We previously reported that the major component of Enterococcus faecalis strain EC-12 (EC-12) inducing production of Interleukin (IL)-12 in mouse/human immune cells was its own RNA. This study aimed to investigate if RNase A-treated EC-12 could also produce IL-10 and to evaluate the possible effects of IL-10 produced by RNase A-treated EC-12. Three experiments were conducted: (1) Assessment of the effect of RNase A-treated EC-12 on transcriptome profiles and biological pathways in human peripheral blood mononuclear cells; (2) Determination of cytokine concentration in its culture supernatants; and (3) Supplementation of RNase A-treated EC-12 (RN) to mice with dextran sodium sulfate-induced colitis. Treatment of EC-12 with RNase A inhibited inflammatory response including the potency to induce IL-12 production, while it did not affect IL-10 production (Experiment 1 and 2). Colitis symptoms were milder in RN than in PBS-supplemented controls (Experiment 3). RNase A-treated EC-12 likely became an anti-inflammatory agent primarily inducing IL-10 production.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Enterococcus faecalis/drug effects , Ribonuclease, Pancreatic/pharmacology , Animals , Culture Media , Dextran Sulfate/adverse effects , Humans , Interleukin-10/biosynthesis , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...