Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 11: 1357626, 2024.
Article in English | MEDLINE | ID: mdl-38948669

ABSTRACT

An 8-year-old castrated male teddy bear dog presented to our clinic with a persistent cough. The sick dog suffered from vehicular trauma 6 months prior to the visit and had imaging and exploratory laparotomy. Imaging and exploratory laparotomy at the time showed no significant damage. We performed contrast radiography (barium gavage) on the sick dog. Based on the results of a complete contrast radiography (barium gavage), tubular shadows in the thoracic cavity were identified as the small intestine and cecum, and delayed traumatic diaphragmatic hernia with hepatothorax and enterothorax was confirmed with radiographs. Accordingly, the sick dog underwent general anesthesia, manual ventilation and diaphragmatic herniorrhaphy by standard ventral midline abdominal approach. Postoperatively, the dog was given analgesia and antibacterial treatment, and the liver biochemical indexes were monitored to prevent endotoxin. Postoperative radiographs revealed clear contours of thoracic and abdominal organs. The dog moved, ate, and urinated normally within 10 days of the surgery. This case provides a reference for a complete barium meal imaging procedure that clearly shows the position of the organs in the thoracoabdominal cavity after the occurrence of a delayed traumatic diaphragmatic hernia. This paper provides a practical reference for the diagnosis of delayed traumatic diaphragmatic hernia with hepatothorax and enterothorax.

2.
Ecotoxicol Environ Saf ; 277: 116364, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38657461

ABSTRACT

The purpose of this study was to investigate the effect of Treg/Th1 imbalance in cadmium-induced lung injury and the potential protective effect of astilbin against cadmium-induced lung injury in chicken. Cadmium exposure significantly decreased T-AOC and GSH-Px levels and SOD activity in the chicken lung tissues. In contrast, it significantly increased the MDA and NO levels. These results indicate that cadmium triggers oxidative stress in lungs. Histopathological analysis revealed that cadmium exposure further induced infiltration of lymphocytes in the chicken lungs, indicating that cadmium causes pulmonary damage. Further analysis revealed that cadmium decreased the expression of IL-4 and IL-10 but increased those of IL-17, Foxp3, TNF-α, and TGF-ß, indicating that the exposure of cadmium induced the imbalance of Treg/Th1. Moreover, cadmium adversely affected chicken lung function by activating the NF-kB pathway and inducing expression of genes downstream to these pathways (COX-2, iNOS), associated with inflammatory injury in the lung tissue. Astilbin reduced cadmium-induced oxidative stress and inflammation in the lungs by increasing antioxidant enzyme activities and restoring Treg/Th1 balance. In conclusion, our results suggest that astilbin treatment alleviated the effects of cadmium-mediated lung injury in chickens by restoring the Treg/Th1 balance.


Subject(s)
Cadmium , Chickens , Flavonols , Lung Injury , Lung , Oxidative Stress , Signal Transduction , T-Lymphocytes, Regulatory , Animals , Cadmium/toxicity , Oxidative Stress/drug effects , Lung/drug effects , Lung/pathology , Signal Transduction/drug effects , T-Lymphocytes, Regulatory/drug effects , Flavonols/pharmacology , Lung Injury/chemically induced , Lung Injury/drug therapy
3.
Biol Trace Elem Res ; 201(5): 2512-2523, 2023 May.
Article in English | MEDLINE | ID: mdl-35717552

ABSTRACT

Cadmium (Cd) can damage tissues by inducing oxidative stress, lymphocyte infiltration, and inflammation in these sites. Meanwhile, astilbin (Ast) is an antioxidant agent. At present, only a few mechanisms of Cd-induced adipose tissue damage have been described. Herein, we assessed the potential protective effects and the molecular mechanism underlying the antioxidant properly of Ast after Cd intake in chicken adipose tissue. In this study, a total of 160 7-day-old roosters were randomly divided into four groups. Roosters were fed with a basic diet (C group), Ast 40 mg/kg (Ast group), CdCl2 150 mg/kg + Ast 40 mg/kg (Cd/Ast group), and CdCl2 150 mg/kg (Cd group) for 60 days. We found that Cd intake changed the morphology and structure of adipose tissues and decreased the expression of several antioxidants, including total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and total antioxidant capacity (T-AOC), but increased those of oxidative stress markers including malondialdehyde (MDA), inducible nitric oxide synthase (iNOS), NO, and H2O2. Cd further activated the nuclear factor kappa B (NF-κB) signaling pathway and increased the expression of the inflammation-related mediators, interleukin 1beta (IL-1ß), interleukin 6 (IL-6), interleukin 8 (IL-8), interleukin 10 (IL-10), cyclooxygenase-2 (COX-2), iNOS, prostaglandin E synthase (PTGES), tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ). Cd-induced oxidative stress upregulated the expression of three heat shock proteins (HSPs), including HSP27, HSP70, and HSP90. Summarily, Cd causes oxidative stress-mediated tissue damage by activating the NF-κB pathway, promoting inflammation and upregulating the expression of HSPs. However, Ast supplementation modulates oxidative stress in adipose tissue by inhibiting inflammation mediated by the NF-κB pathway and regulating the expression of HSPs.


Subject(s)
Antioxidants , NF-kappa B , Animals , Male , Antioxidants/pharmacology , Antioxidants/metabolism , NF-kappa B/metabolism , Cadmium/pharmacology , Chickens/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress , Inflammation/chemically induced , Inflammation/drug therapy , Heat-Shock Proteins/metabolism
4.
Biol Trace Elem Res ; 200(10): 4430-4443, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34799836

ABSTRACT

Cadmium (Cd) can cause endoplasmic reticulum stress (ERS) and apoptosis in animals. The kidney is an organ seriously affected by Cd because it can accumulate metal ions. Astilbin (ASB) is a dihydroflavonol rhamnoside, which has an anti-renal injury effect. This study aimed to evaluate the protective effect of ASB on Cd-induced ERS and apoptosis in the chicken kidney. In this study, a total of 120 1-day-old chickens were randomly divided into 4 groups. Chickens were fed with a basic diet (Con group), ASB 40 mg/kg (ASB group), CdCl2 150 mg/kg + ASB 40 mg/kg (ASB/Cd group), and CdCl2 150 mg/kg (Cd group) for 90 days. The results showed that Cd exposure induced pathological and ultrastructural damages and apoptosis in chicken kidneys. Compared with the Con group, metallothionein (MT1/MT2) level, nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) activity, ERS-related genes 78-kDa glucose-regulated protein (Grp78), protein kinase PKR-like endoplasmic reticulum kinase (Perk), activating transcription factor 4 (Atf4) and CAAT/enhancer-binding protein (C/EBP) homologous protein (Chop), and pro-apoptotic gene B-cell lymphoma 2 (Bcl-2)-associated X (Bax), caspase-12, caspase-9, caspase-3 expression levels, and apoptotic rate were significantly increased in the Cd group. The expression level of Bcl-2 was significantly decreased in the Cd group. ASB/Cd combined treatment significantly improves the damage of chicken kidneys by ameliorating Cd-induced kidney ERS and apoptosis. Cd can cause the disorder of the GRP78 signal axis, activate the PERK-ATF4-CHOP pathway, aggravate the structural damage and dysfunction of ER, and promote the apoptosis of chicken kidneys, while the above changes were significantly alleviated in the ASB/Cd group. The results showed that ASB antagonizes the negative effects of Cd and against Cd-induced apoptosis in chicken kidneys via ERS signaling pathway.


Subject(s)
Endoplasmic Reticulum Stress , Selenium , Animals , Apoptosis , Cadmium/pharmacology , Chickens/metabolism , Flavonols , Kidney/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Selenium/pharmacology , Signal Transduction
5.
Int Immunopharmacol ; 102: 108408, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34920313

ABSTRACT

Zearalenone (ZEA) is a ubiquitous mycotoxin contaminant that causes immune toxicity, apoptosis, and oxidative stress in animals. Hyperoside (Hyp) is a flavonol glycoside compound with antioxidant and anti-apoptotic properties. However, the potential of Hyp to prevent ZEA-induced spleen injury remains unknown. To evaluate the chemoprotective effect of Hyp against ZEA-induced spleen injury, 60 male Kunming mice were randomly assigned into five groups. The first two groups were orally treated with ZEA (40 mg/kg) for 30 days, and combined with Hyp (0, 100 mg/kg) treatment. The other three groups are orally treated with normal saline, olive oil, or Hyp (100 mg/kg) for 30 days. Hyperoside had an inhibitory effect against ZEA-induced spleen lesions. In addition, Hyp significantly increased the activity of antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT)], the total antioxidant capacity (T-AOC), and significantly reduced the malondialdehyde (MDA) content reducing ZEA-induced oxidative stress in the spleen. Moreover, the translation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target genes (CAT, NQO1, SOD1, GSS, GCLM, and GCLC) were ameliorated using co-therapy with Hyp before treatment with ZEA. Hyperoside also significantly inhibited the translation and expression of apoptotic genes (caspase3, casepase9, Bax, Bcl-2) and the production of apoptotic bodies induced by ZEA in the spleen. In conclusion, the findings revealed that Hyp inhibited ZEA-induced spleen injury through its antioxidant and anti-apoptotic effects. Thus, it provides a new treatment option for immune system diseases caused by ZEA.


Subject(s)
Antioxidants/therapeutic use , Apoptosis/drug effects , Oxidative Stress/drug effects , Quercetin/analogs & derivatives , Spleen/injuries , Zearalenone/adverse effects , Animals , Animals, Outbred Strains , Male , Mice , Microscopy, Electron, Transmission , Quercetin/therapeutic use , Real-Time Polymerase Chain Reaction , Spleen/drug effects , Spleen/metabolism , Spleen/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...