Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 6448, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499574

ABSTRACT

High performance and comfort are key features recommended in hybrid electric vehicle (HEV) design. In this paper, a new coordination strategy is proposed to solve the issue of undesired torque jerks and large power ripples noticed respectively during drive mode commutations and power sources switching. The proposed coordinated switching strategy uses stair-based transition function to perform drive mode commutations and power source switching's within defined transition periods fitting the transient dynamics of power sources and traction machines. The proposed technique is applied on a battery/ supercapacitor electric vehicle whose traction is ensured by two permanent magnet synchronous machines controlled using direct torque control and linked to HEV front and rear wheels. Simulation results highlight that the proposed coordinated switching strategy has a noteworthy positive impact on enhancing HEV transient performance as DC bus fluctuations were reduced to a narrow band of 6 V and transient torque ripples were almost suppressed.

2.
Sensors (Basel) ; 22(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36146122

ABSTRACT

Any engineering system involves transitions that reduce the performance of the system and lower its comfort. In the field of automotive engineering, the combination of multiple motors and multiple power sources is a trend that is being used to enhance hybrid electric vehicle (HEV) propulsion and autonomy. However, HEV riding comfort is significantly reduced because of high peaks that occur during the transition from a single power source to a multisource powering mode or from a single motor to a multiple motor traction mode. In this study, a novel model-based soft transition algorithm (STA) is used for the suppression of large transient ripples that occur during HEV drivetrain commutations and power source switches. In contrast to classical abrupt switching, the STA detects transitions, measures their rates, generates corresponding transition periods, and uses adequate transition functions to join the actual and the targeted operating points of a given HEV system variable. As a case study, the STA was applied to minimize the transition ripples that occur in a fuel cell-supercapacitor HEV. The transitions that occurred within the HEV were handled using two proposed transition functions which were: a linear-based transition function and a stair-based transition function. The simulation results show that, in addition to its ability to improve driving comfort by minimizing transient torque ripples and DC bus voltage fluctuations, the STA helps to increase the lifetime of the motor and power sources by reducing the currents drawn during the transitions. It is worth noting that the considered HEV runs on four-wheel drive when the load torque applied on it exceeds a specified torque threshold; otherwise, it operates in rear-wheel drive.


Subject(s)
Algorithms , Automobile Driving , Computer Simulation , Electric Power Supplies , Electricity , Motor Vehicles
SELECTION OF CITATIONS
SEARCH DETAIL
...