Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 24009, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34907268

ABSTRACT

Traumatic brain injury (TBI) leads to a deleterious neuroinflammation, originating from microglial activation. Monitoring microglial activation is an indispensable step to develop therapeutic strategies for TBI. In this study, we evaluated the use of the 18-kDa translocator protein (TSPO) in positron emission tomography (PET) and cellular analysis to monitor microglial activation in a mild TBI mouse model. TBI was induced on male Swiss mice. PET imaging analysis with [18F]FEPPA, a TSPO radiotracer, was performed at 1, 3 and 7 days post-TBI and flow cytometry analysis on brain at 1 and 3 days post-TBI. PET analysis showed no difference in TSPO expression between non-operated, sham-operated and TBI mice. Flow cytometry analysis demonstrated an increase in TSPO expression in ipsilateral brain 3 days post-TBI, especially in microglia, macrophages, lymphocytes and neutrophils. Moreover, microglia represent only 58.3% of TSPO+ cells in the brain. Our results raise the question of the use of TSPO radiotracer to monitor microglial activation after TBI. More broadly, flow cytometry results point the lack of specificity of TSPO for microglia and imply that microglia contribute to the overall increase in TSPO in the brain after TBI, but is not its only contributor.


Subject(s)
Anilides/pharmacology , Leukocytes/metabolism , Microglia/metabolism , Positron-Emission Tomography , Pyridines/pharmacology , Receptors, GABA , Animals , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/metabolism , Male , Mice
2.
Pharmaceutics ; 13(10)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34683918

ABSTRACT

Traumatic brain injury (TBI) is a leading cause of death and disability all over the world. TBI leads to (1) an inflammatory response, (2) white matter injuries and (3) neurodegenerative pathologies in the long term. In humans, TBI occurs most often in children and adolescents or in the elderly, and it is well known that immune responses and the neuroregenerative capacities of the brain, among other factors, vary over a lifetime. Thus, age-at-injury can influence the consequences of TBI. Furthermore, age-at-injury also influences the pharmacological effects of drugs. However, the post-TBI inflammatory, neuronal and functional consequences have been mostly studied in experimental young adult animal models. The specificity and the mechanisms underlying the consequences of TBI and pharmacological responses are poorly understood in extreme ages. In this review, we detail the variations of these age-dependent inflammatory responses and consequences after TBI, from an experimental point of view. We investigate the evolution of microglial, astrocyte and other immune cells responses, and the consequences in terms of neuronal death and functional deficits in neonates, juvenile, adolescent and aged male animals, following a single TBI. We also describe the pharmacological responses to anti-inflammatory or neuroprotective agents, highlighting the need for an age-specific approach to the development of therapies of TBI.

3.
J Neurotrauma ; 37(11): 1342-1357, 2020 06 01.
Article in English | MEDLINE | ID: mdl-31830858

ABSTRACT

Traumatic brain injury (TBI) is a chronic pathology, inducing long-term deficits that remain understudied in pre-clinical studies. In this context, exploration, anxiety-like behavior, cognitive flexibility, and motor coordination were assessed until 5 and 10 months after an experimental TBI in the adult mouse, using two cohorts. In order to differentiate age, surgery, and remote gray and white matter lesions, three groups (unoperated, sham-operated, and TBI) were studied. TBI induced delayed motor coordination deficits at the pole test, 4.5 months after injury, that could be explained by gray and white matter damages in ipsilateral nigrostriatal structures (striatum, internal capsule) that were spreading to new structures between cohorts, at 5 versus 10 months after the injury. Further, TBI induced an enhanced exploratory behavior during stressful situations (active phase during actimetry test, object exploration in an open field), risk-taking behaviors in the elevated plus maze 5 months after injury, and a cognitive inflexibility in the Barnes maze that persisted until 9 months after the injury. These behavioral modifications could be related to the white and gray matter lesions observed in ipsi- and contralateral limbic structures (amygdala, hilus/cornu ammonis 4, hypothalamus, external capsule, corpus callosum, and cingular cortex) that were spreading to new structures between cohorts, at 5 months versus 10 months after the injury. The present study corroborates clinical findings on TBI and provides a relevant rodent chronic model which could help in validating pharmacological strategies against the chronic consequences of TBI.


Subject(s)
Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/psychology , Brain/pathology , Exploratory Behavior/physiology , Maze Learning/physiology , Animals , Brain Injuries, Traumatic/surgery , Follow-Up Studies , Male , Mice , Time Factors
4.
PLoS One ; 12(9): e0184811, 2017.
Article in English | MEDLINE | ID: mdl-28910378

ABSTRACT

Traumatic brain injury (TBI) results in white matter injury (WMI) that is associated with neurological deficits. Neuroinflammation originating from microglial activation may participate in WMI and associated disorders. To date, there is little information on the time courses of these events after mild TBI. Therefore we investigated (i) neuroinflammation, (ii) WMI and (iii) behavioral disorders between 6 hours and 3 months after mild TBI. For that purpose, we used experimental mild TBI in mice induced by a controlled cortical impact. (i) For neuroinflammation, IL-1b protein as well as microglial phenotypes, by gene expression for 12 microglial activation markers on isolated CD11b+ cells from brains, were studied after TBI. IL-1b protein was increased at 6 hours and 1 day. TBI induced a mixed population of microglial phenotypes with both pro-inflammatory, anti-inflammatory and immunomodulatory markers from 6 hours to 3 days post-injury. At 7 days, microglial activation was completely resolved. (ii) Three myelin proteins were assessed after TBI on ipsi- and contralateral corpus callosum, as this structure is enriched in white matter. TBI led to an increase in 2',3'-cyclic-nucleotide 3'-phosphodiesterase, a marker of immature and mature oligodendrocyte, at 2 days post-injury; a bilateral demyelination, evaluated by myelin basic protein, from 7 days to 3 months post-injury; and an increase in myelin oligodendrocyte glycoprotein at 6 hours and 3 days post-injury. Transmission electron microscopy study revealed various myelin sheath abnormalities within the corpus callosum at 3 months post-TBI. (iii) TBI led to sensorimotor deficits at 3 days post-TBI, and late cognitive flexibility disorder evidenced by the reversal learning task of the Barnes maze 3 months after injury. These data give an overall invaluable overview of time course of neuroinflammation that could be involved in demyelination and late cognitive disorder over a time-scale of 3 months in a model of mild TBI. This model could help to validate a pharmacological strategy to prevent post-traumatic WMI and behavioral disorders following mild TBI.


Subject(s)
Brain Concussion/immunology , Cognition Disorders/etiology , Microglia/immunology , Myelin Sheath/pathology , White Matter/pathology , Animals , Biomarkers/metabolism , Brain Concussion/complications , Brain Concussion/metabolism , Disease Models, Animal , Interleukin-1beta/metabolism , Maze Learning , Mice , Microscopy, Electron, Transmission , Myelin Sheath/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...