Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Type of study
Language
Publication year range
3.
J Econ Entomol ; 114(2): 1009-1014, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33604661

ABSTRACT

The South American soybean pest, Rachiplusia nu (Guenée), is naturally infected by Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Rachiplusia nu nucleopolyhedrovirus (RanuNPV). We compared their pathogenicity to fourth-instar R. nu larvae, by evaluating time to death and virus spread throughout the tissues in single and mixed infections. Bioassays showed that generalist AcMNPV had a faster speed of kill than specific RanuNPV, while the mixed-virus treatment did not statistically differ from AcMNPV alone. Histopathology evidenced similar tissue tropism for both viruses, but co-inoculation resulted in mostly AcMNPV-infected cells. In sequential inoculations, however, the first virus administered predominated over the second one. Implications on baculovirus interactions and biocontrol potential are discussed.


Subject(s)
Lepidoptera , Moths , Nucleopolyhedroviruses , Animals , Larva , Spodoptera , Virulence
4.
J Invertebr Pathol ; 166: 107211, 2019 09.
Article in English | MEDLINE | ID: mdl-31220457

ABSTRACT

Rachiplusia nu (Lepidoptera: Noctuidae) is a key soybean pest in Argentina. Current management of this moth relies mainly on the use of synthetic insecticides and transgenic plants. In search of biological control-based alternatives, a baculovirus from R. nu (hereafter RanuNPV) was characterized and its insecticidal properties tested under laboratory conditions. RanuNPV occlusion bodies (OBs) were nearly tetrahedral, averaging 1.0 ±â€¯0.2 µm in their longest edge and containing singly enveloped nucleocapsids. Histopathology of infected late-instar larvae revealed broad tissue tropism, where fat bodies and epidermis were the most affected organs. Phylogenetic analysis of concatenated polh, lef-8 and lef-9 partial sequences classified RanuNPV as a new species that clusters with other group II alphabaculoviruses infecting larvae of Plusiinae. Bioassays performed with R. nu neonates determined the median lethal dosage to be approximately 2.5 OBs/larva; most insects died within 4-5 days post inoculation showing typical baculovirus-induced liquefaction. No effects were observed in other lepidopteran species assayed, including Spodoptera frugiperda, Cydia pomonella and Diatraea saccharalis. High pathogenicity and host specificity make RanuNPV a good candidate for controlling R. nu.


Subject(s)
Moths/virology , Nucleopolyhedroviruses , Pest Control, Biological/methods , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...