Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38895483

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is increasingly common but its pathogenesis is poorly understood. The ability to assess genetic and pharmacologic interventions is hampered by the lack of robust preclinical mouse models of HFpEF. We have developed a novel "2-hit" model, which combines obesity and insulin resistance with chronic pressure overload to recapitulate clinical features of HFpEF. C57BL6/NJ mice fed a high fat diet for >10 weeks were administered an AAV8-driven vector resulting in constitutive overexpression of mouse Renin1d . Control mice, HFD only, Renin only and HFD-Renin (aka "HFpEF") littermates underwent a battery of cardiac and extracardiac phenotyping. HFD-Renin mice demonstrated obesity and insulin resistance, a 2-3-fold increase in circulating renin levels that resulted in 30-40% increase in left ventricular hypertrophy, preserved systolic function, and diastolic dysfunction indicated by altered E/e', IVRT, and strain measurements; increased left atrial mass; elevated natriuretic peptides; and exercise intolerance. Transcriptomic and metabolomic profiling of HFD-Renin myocardium demonstrated upregulation of pro-fibrotic pathways and downregulation of metabolic pathways, in particular branched chain amino acid catabolism, similar to findings in human HFpEF. Treatment of these mice with the sodium-glucose cotransporter 2 inhibitor empagliflozin, an effective but incompletely understood HFpEF therapy, improved exercise tolerance, left heart enlargement, and insulin homeostasis. The HFD-Renin mouse model recapitulates key features of human HFpEF and will enable studies dissecting the contribution of individual pathogenic drivers to this complex syndrome. Addition of HFD-Renin mice to the preclinical HFpEF model platform allows for orthogonal studies to increase validity in assessment of interventions. NEW & NOTEWORTHY: Heart failure with preserved ejection fraction (HFpEF) is a complex disease to study due to limited preclinical models. We rigorously characterize a new two-hit HFpEF mouse model, which allows for dissecting individual contributions and synergy of major pathogenic drivers, hypertension and diet-induced obesity. The results are consistent and reproducible in two independent laboratories. This high-fidelity pre-clinical model increases the available, orthogonal models needed to improve our understanding of the causes and assessment treatments for HFpEF.

2.
bioRxiv ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38746425

ABSTRACT

Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are novel, potent heart failure medications with an unknown mechanism of action. We sought to determine if the beneficial actions of SGLT2i in heart failure were on- or off-target, and related to metabolic reprogramming, including increased lipolysis and ketogenesis. The phenotype of mice treated with empagliflozin and genetically engineered mice constitutively lacking SGLT2 mirrored metabolic changes seen in human clinical trials (including reduced blood glucose, increased ketogenesis, and profound glucosuria). In a mouse heart failure model, SGLT2i treatment, but not generalized SGLT2 knockout, resulted in improved systolic function and reduced pathologic cardiac remodeling. SGLT2i treatment of the SGLT2 knockout mice sustained the cardiac benefits, demonstrating an off-target role for these drugs. This benefit is independent of metabolic changes, including ketosis. The mechanism of action and target of SGLT2i in HF remain elusive.

SELECTION OF CITATIONS
SEARCH DETAIL
...