Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612381

ABSTRACT

Candida albicans is a prevalent fungal pathogen that displays antibiotic resistance. The polyene antifungal amphotericin B (AmB) has been the gold standard because of its broad antifungal spectra, and its liposomal formulation, AmBisome, has been used widely and clinically in treating fungal infections. Herein, we explored enhancing the antifungal activity of AmBisome by integrating a small chitin-binding domain (LysM) of chitinase A derived from Pteris ryukyuensis. LysM conjugated with a lipid (LysM-lipid) was initially prepared through microbial transglutaminase (MTG)-mediated peptide tag-specific conjugation of LysM with a lipid-peptide substrate. The AmBisome formulation modified with LysM-lipid conjugates had a size distribution that was comparable to the native liposomes but an increased zeta potential, indicating that LysM-lipid conjugates were anchored to AmBisome. LysM-lipid-modified AmBisome exhibited long-term stability at 4 °C while retaining the capacity to bind chitin. Nevertheless, the antifungal efficacy of LysM-lipid-modified AmBisome against C. albicans was modest. We then redesigned a new LysM-lipid conjugate by introducing a peptide linker containing a thrombin digestion (TD) site at the C-terminus of LysM (LysM-TD linker-lipid), thereby facilitating the liberation of the LysM domain from AmBisome upon the addition of thrombin. This new AmBisome formulation anchored with LysM-TD linker-lipid exhibited superior performance in suppressing C. albicans growth in the presence of thrombin compared with the LysM-lipid formulation. These results provide a platform to design stimuli-responsive AmBisome formulations that respond to external environments and thus advance the treatment of pathogenic fungi infections.


Subject(s)
Amphotericin B , Antifungal Agents , Peptide Hydrolases , Antifungal Agents/pharmacology , Liposomes , Thrombin , Candida albicans , Chitin , Peptides/pharmacology , Lipids
2.
Planta ; 258(6): 116, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37946063

ABSTRACT

MAIN CONCLUSION: Each ß-1,3-glucanase with antifungal activity or yeast lytic activity hydrolyzes different structures of ß-1,3-glucans in the fungal cell wall, respectively. Plants express several glycoside hydrolases that target chitin and ß-glucan in fungal cell walls and inhibit pathogenic fungal infection. An antifungal ß-1,3-glucanase was purified from gazyumaru (Ficus microcarpa) latex, designated as GlxGluA, and the corresponding gene was cloned and expressed in Escherichia coli. The sequence shows that GlxGluA belongs to glycoside hydrolase family 17 (GH17). To investigate how GlxGluA acts to degrade fungal cell wall ß-glucan, it was compared with ß-1,3-glucanase with different substrate specificities. We obtained recombinant ß-1,3-glucanase (designated as CcGluA), which belongs to GH64, from the bacterium Cellulosimicrobium cellulans. GlxGluA inhibited the growth of the filamentous fungus Trichoderma viride but was unable to lyse the yeast Saccharomyces cerevisiae. In contrast, CcGluA lysed yeast cells but had a negligible inhibitory effect on the growth of filamentous fungi. GlxGluA degraded the cell wall of T. viride better than CcGluA, whereas CcGluA degraded the cell wall of S. cerevisiae more efficiently than GlxGluA. These results suggest that the target substrates in fungal cell walls differ between GlxGluA (GH17 class I ß-1,3-glucanase) and CcGluA (GH64 ß-1,3-glucanase).


Subject(s)
Ficus , beta-Glucans , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Saccharomyces cerevisiae/metabolism , beta-Glucans/metabolism , Ficus/metabolism , Latex/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/analysis , Glycoside Hydrolases/metabolism , Fungi/metabolism , Bacteria/metabolism , Cell Wall/metabolism
3.
J Appl Glycosci (1999) ; 69(3): 49-56, 2022.
Article in English | MEDLINE | ID: mdl-36304837

ABSTRACT

The GH-16 type ß-1,3-glucanase (BgluC16MK) gene of Lysobacter sp. MK9-1 was cloned to study its antifungal activities. BgluC16MK displays amino acid sequence similarity with GluC from L. enzymogenes strain N4-7. BgluC16MK includes a signal sequence, a catalytic domain and carbohydrate-binding module family 6-type ß-glucan binding domain (B-GBD). The expression of the BgluC16MK gene in Escherichia coli without the signal sequence resulted in antifungal activity at a dose of 0.6-0.8 nmol/disk. However, BgluC16MK displayed antifungal activity at a dose of 0.025 nmol/disk in combination with Chi19MK. Substrate-specific assay revealed that purified BgluC16MK hydrolyzed insoluble curdlan more readily than the soluble substrate. Furthermore, to explore the binding selectivity of B-GBD of BgluC16MK, we constructed a fusion protein (B-GBD-GFP) using the B-GBD and green fluorescent protein. The activity of the fusion protein against various substrates indicates that B-GBD was selective for glucans with ß-1,3-linkages. An additional study demonstrated the binding ability of B-GBD-GFP to the cell-wall of living fungi, such as T. reesei and Aspergillus oryzae. These findings suggest that BgluC16MK can be utilized to generate antifungal enzyme preparations and that the fusion protein B-GBD-GFP can be used to identify the fungal cell surface structure using ß-glucans.

4.
Mol Pharm ; 19(11): 3906-3914, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36066555

ABSTRACT

Fungal infections affect more than one billion people worldwide and cause more than one million deaths per year. Amphotericin B (AmB), a polyene antifungal drug, has been used as the gold standard for many years because of its broad antifungal spectrum, high activity, and low tendency of drug resistance. However, the side effects of AmB, such as nephrotoxicity and hepatotoxicity, have hampered its widespread use, leading to the development of a liposome-type AmB formulation, AmBisome. Herein, we report a simple but highly effective strategy to enhance the antifungal activity of AmBisome with a lipid-modified protein. The chitin-binding domain (LysM) of the antifungal chitinase, Pteris ryukyuensis chitinase A (PrChiA), a small 5.3 kDa protein that binds to fungal cell wall chitin, was engineered to have a glutamine-containing peptide tag at the C-terminus for the microbial transglutaminase (MTG)-catalyzed crosslinking reaction (LysM-Q). LysM-Q was site-specifically modified with a lysine-containing lipid peptide substrate of MTG with a palmitoyl moiety (Pal-K). The resulting palmitoylated LysM (LysM-Pal) exhibited negligible cytotoxicity to mammalian cells and can be easily anchored to yield LysM-presenting AmBisome (LysM-AmBisome). LysM-AmBisome exhibited a dramatic enhancement of antifungal activity toward Trichoderma viride and Cryptococcus neoformans, demonstrating the marked impact of displaying a cell-wall binder protein on the targeting ability of antifungal liposomal formulations. Our simple strategy with enzymatic protein lipidation provides a potent approach to upgrade other types of lipid-based drug formulations.


Subject(s)
Amphotericin B , Chitinases , Animals , Humans , Amphotericin B/pharmacology , Amphotericin B/chemistry , Antifungal Agents/chemistry , Chitin , Liposomes , Lipids , Mammals/metabolism
5.
J Biosci Bioeng ; 134(3): 259-263, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35781189

ABSTRACT

Amphotericin B (AMB) is a gold standard antifungal drug because of its broad-spectrum activity toward pathogenic yeasts and molds. Because of its low solubility in water and toxicity toward humans, several lipid-based formulations that either increase the aqueous solubility or decrease the side effects have been employed in practical use. In our previous research, we found that the combination of AMB with an artificial palmitoylated chitin-binding domain from Pteris ryukyuensis chitinase (LysM-Pal) resulted in synergistic antifungal action against Trichoderma viride. Herein, we prepared hybrid liposomal formulations by combining a commercially available AMB formulation and liposomes with different surface charges to explore key factors in the antifungal activity. The characterization of AMB-loaded liposomal formulations (AMB-LFs), including particle size distribution and zeta potential, showed that anionic and neutral AMB-LFs could stably encapsulate AMB. The combination of either anionic or neutral AMB-LFs with unmodified LysM decreased the minimum inhibitory concentration of AMB. The combination of neutral AMB-LF with LysM-Pal resulted in a further decrease in the MIC, up to 15-fold compared with that of the neutral AMB-LF alone. Our results demonstrate the potential utility of lipid-based liposomal formulations of AMB combined with lipid-modified proteinaceous binders to tackle fungal infections.


Subject(s)
Amphotericin B , Antifungal Agents , Amphotericin B/adverse effects , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Carrier Proteins , Chitin , Humans , Lipids/chemistry , Liposomes
6.
Plant Sci ; 321: 111310, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35696910

ABSTRACT

A unique GH18 chitinase containing two N-terminal lysin motifs (PrLysM1 and PrLysM2) was first found in fern, Pteris ryukyuensis (Onaga and Taira, Glycobiology, 18, 414-423, 2008). This type of LysM-chitinase conjugates is not usually found in plants but in fungi. Here, we produced a similar GH18 chitinase with one N-terminal LysM module (EaLysM) from the fern, Equisetum arvense (EaChiA, Inamine et al., Biosci. Biotechnol. Biochem., 79, 1296-1304, 2015), using an Escherichia coli expression system and characterized for its structure and mechanism of action. The crystal structure of EaLysM exhibited an almost identical fold (ßααß) to that of PrLysM2. From isothermal titration calorimetry and nuclear magnetic resonance, the binding mode and affinities of EaLysM for chitooligosaccharides (GlcNAc)n (3, 4, 5, and 6) were found to be comparable to those of PrLysM2. The LysM module in EaChiA is likely to bind (GlcNAc)n almost independently through CH-π stacking of a Tyr residue with the pyranose ring. The (GlcNAc)n-binding mode of LysMs in the LysM-chitinase conjugates from fern plants appears to differ from that of plant LysMs acting in chitin- or Nod-signal perception, in which multiple LysMs cooperatively act on (GlcNAc)n. Phylogenetic analysis suggested that LysM-GH18 conjugates of fern plants formed a monophyletic group and had been separated earlier than forming the clade of fungal chitinases with LysMs.


Subject(s)
Chitinases , Ferns , Chitin/chemistry , Chitin/metabolism , Chitinases/genetics , Chitinases/metabolism , Ferns/genetics , Ferns/metabolism , Phylogeny
7.
Appl Environ Microbiol ; 88(12): e0065222, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35652665

ABSTRACT

Chitin is a biopolymer of N-acetyl-d-glucosamine with ß-1,4-bond and is the main component of arthropod exoskeletons and the cell walls of many fungi. Chitinase (EC 3.2.1.14) is an enzyme that hydrolyzes the ß-1,4-bond in chitin and degrades chitin into oligomers. It has been found in a wide range of organisms. Chitinase from Gazyumaru (Ficus microcarpa) latex exhibits antifungal activity by degrading chitin in the cell wall of fungi and is expected to be used in medical and agricultural fields. However, the enzyme's thermostability is an important factor; chitinase is not thermostable enough to maintain its activity under the actual application conditions. In addition to the fact that thermostable chitinases exhibiting antifungal activity can be used under various conditions, they have some advantages for the production process and long-term preservation, which are highly demanded in industrial use. We solved the crystal structure of chitinase to explore the target sites to improve its thermostability. We rationally introduced proline residues, a disulfide bond, and salt bridges in the chitinase using protein-engineering methods based on the crystal structure and sequence alignment among other chitinases. As a result, we successfully constructed the thermostable mutant chitinases rationally with high antifungal and specific activities. The results provide a useful strategy to enhance the thermostability of this enzyme family. IMPORTANCE We solved the crystal structure of the chitinase from Gazyumaru (Ficus microcarpa) latex exhibiting antifungal activity. Furthermore, we demonstrated that the thermostable mutant enzyme with a melting temperature (Tm) 6.9°C higher than wild type (WT) and a half-life at 60°C that is 15 times longer than WT was constructed through 10 amino acid substitutions, including 5 proline residues substitutions, making disulfide bonding, and building a salt bridge network in the enzyme. These mutations do not affect its high antifungal activity and chitinase activity, and the principle for the construction of the thermostable chitinase was well explained by its crystal structure. Our results provide a useful strategy to enhance the thermostability of this enzyme family and to use the thermostable mutant as a seed for antifungal agents for practical use.


Subject(s)
Antifungal Agents , Chitinases , Antifungal Agents/chemistry , Chitin/chemistry , Chitinases/chemistry , Disulfides , Enzyme Stability , Ficus/enzymology , Fungi , Latex , Proline
8.
ACS Infect Dis ; 8(5): 1051-1061, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35471825

ABSTRACT

Combinations of antifungal drugs can have synergistic antifungal activity, achieving high therapeutic efficacy while minimizing the side effects. Amphotericin B (AMB) has been used as a standard antifungal drug for fungal infections; however, because of its high toxicity, new strategies to minimize the required dose are desirable. Chitinases have recently received attention as alternative safe antifungal agents. Herein, we report the combination of palmitoylated chitinase domains with AMB to enhance the antifungal activity. The chitin-binding domain (LysM) from Pteris ryukyuensis chitinase was site-specifically palmitoylated by conjugation reaction catalyzed by microbial transglutaminase. The palmitoylated LysM (LysM-Pal) exhibited strong antifungal activity against Trichoderma viride, inhibiting the growth completely at a concentration of 2 µM. This antifungal effect of LysM-Pal was mainly due to the effect of anchoring of palmitic acid motif to the plasma membrane of fungi. A combination of AMB with LysM-Pal resulted in synergistic enhancement of the antifungal activity. Intriguingly, LysM-Pal exhibited higher level of antifungal activity enhancement than palmitoylated catalytic domain (CatD) and fusion of LysM and CatD. Addition of 0.5 µM LysM-Pal to AMB reduced the minimal inhibition concentration of AMB to 0.31 µM (2.5 µM without LysM-Pal). The possible mechanism of the synergistic effect of AMB and LysM-Pal is destabilization of the plasma membrane by anchoring of palmitic acid and ergosterol extraction by AMB and destabilization of the chitin layer by LysM binding. The combination of LysM-Pal with AMB can drastically reduce the dose of AMB and may be a useful strategy to treat fungal infections.


Subject(s)
Chitinases , Mycoses , Amphotericin B/pharmacology , Antifungal Agents/chemistry , Chitin , Chitinases/chemistry , Chitinases/metabolism , Humans , Lipoylation , Mycoses/drug therapy , Palmitic Acid
9.
Appl Environ Microbiol ; 87(21): e0114421, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34406826

ABSTRACT

Certain Aspergillus and Penicillium spp. produce the fungal cell wall component nigeran, an unbranched d-glucan with alternating α-1,3- and α-1,4-glucoside linkages, under nitrogen starvation. The mechanism underlying nigeran biosynthesis and the physiological role of nigeran in fungal survival are not clear. We used RNA sequencing (RNA-seq) to identify genes involved in nigeran synthesis in the filamentous fungus Aspergillus luchuensis when grown under nitrogen-free conditions. agsB, which encodes a putative α-1,3-glucan synthase, and two adjacent genes (agtC and gnsA) were upregulated under conditions of nitrogen starvation. Disruption of agsB in A. luchuensis (ΔagsB) resulted in the complete loss of nigeran synthesis. Furthermore, the overexpression of agsB in an Aspergillus oryzae strain that cannot produce nigeran resulted in nigeran synthesis. These results indicated that agsB encodes a nigeran synthase. Therefore, we have renamed the A. luchuensis agsB gene the nigeran synthase gene (nisA). Nigeran synthesis in an agtC mutant (ΔagtC) increased to 121%; conversely, those in the ΔgnsA and ΔagtC ΔgnsA strains decreased to 64% and 63%, respectively, compared to that in the wild-type strain. Our results revealed that AgtC and GnsA play an important role in regulating not only the quantity of nigeran but also its polymerization. Collectively, our results demonstrated that nisA (agsB) is essential for nigeran synthesis in A. luchuensis, whereas agtC and gnsA contribute to the regulation of nigeran synthesis and its polymerization. This research provides insights into fungal cell wall biosynthesis, specifically the molecular evolution of fungal α-glucan synthase genes and the potential utilization of nigeran as a novel biopolymer. IMPORTANCE The fungal cell wall is composed mainly of polysaccharides. Under nitrogen-free conditions, some Aspergillus and Penicillium spp. produce significant levels of nigeran, a fungal cell wall polysaccharide composed of alternating α-1,3/1,4-glucosidic linkages. The mechanisms regulating the biosynthesis and function of nigeran are unknown. Here, we performed RNA sequencing of Aspergillus luchuensis cultured under nitrogen-free or low-nitrogen conditions. A putative α-1,3-glucan synthase gene, whose transcriptional level was upregulated under nitrogen-free conditions, was demonstrated to encode nigeran synthase. Furthermore, two genes encoding an α-glucanotransferase and a hypothetical protein were shown to be involved in controlling the nigeran content and molecular weight. This study reveals genes involved in the synthesis of nigeran, a potential biopolymer, and provides a deeper understanding of fungal cell wall biosynthesis.


Subject(s)
Aspergillus , Cell Wall/genetics , Glucans/biosynthesis , Glucosyltransferases/genetics , Aspergillus/enzymology , Aspergillus/genetics , Fungal Proteins/genetics , Nitrogen , Polymerization , RNA-Seq
10.
Bioconjug Chem ; 32(8): 1688-1698, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34251809

ABSTRACT

Enzymatic reaction offers site-specific conjugation of protein units to form protein conjugates or protein polymers with intrinsic functions. Herein, we report horseradish peroxidase (HRP)- and microbial transglutaminase (MTG)-catalyzed orthogonal conjugation reactions to create antifungal protein polymers composed of Pteris ryukyuensis chitinase-A (ChiA) and its two domains, catalytic domain, CatD, and chitin-binding domain, LysM2. We engineered the ChiA and CatD by introducing a peptide tag containing tyrosine (Y-tag) at N-termini and a peptide tag containing lysine and tyrosine (KY-tag) at C-termini to construct Y-ChiA-KY and Y-CatD-KY. Also, LysM2 with Y-tag and KY-tag (Y-LysM2-KY) or with a glutamine-containing peptide tag (Q-tag) (LysM2-Q) were constructed. The proteins with Y-tag and KY-tag were efficiently polymerized by HRP reaction through the formation of dityrosine bonds at the tyrosine residues in the peptide tags. The Y-CatD-KY polymer was further treated by MTG to orthogonally graft LysM2-Q to the KY-tag via isopeptide formation between the side chains of the glutamine and lysine residues in the peptide tags to form LysM2-grafted CatD polymer. The LysM2-grafted CatD polymer exhibited significantly higher antifungal activity than the homopolymer of Y-ChiA-KY and the random copolymer of Y-CatD-KY and Y-LysM2-KY, demonstrating that the structural differences of artificial chitinase polymers have a significant impact on the antifungal activity. This strategy of polymerization and grafting reaction of protein can contribute to the further research and development of functional protein polymers for specific applications in various fields in biotechnology.


Subject(s)
Antifungal Agents/pharmacology , Chitin/chemistry , Chitinases/chemistry , Chitinases/metabolism , Enzymes/metabolism , Antifungal Agents/chemical synthesis , Enzymes/chemistry , Polymers , Protein Binding , Protein Domains
11.
Planta ; 253(6): 120, 2021 May 13.
Article in English | MEDLINE | ID: mdl-33987712

ABSTRACT

MAIN CONCLUSION: A chitin-binding domain could contribute to the antifungal ability of chitinase through its affinity to the fungal lateral wall by hydrophobic interactions. Complementary DNA encoding the antifungal chitinase of gazyumaru (Ficus microcarpa), designated GlxChiB, was cloned and expressed in Escherichia coli cells. The results of cDNA cloning showed that the precursor of GlxChiB has an N-terminal endoplasmic reticulum targeting signal and C-terminal vacuolar targeting signal, whereas mature GlxChiB is composed of an N-terminal carbohydrate-binding module family-18 domain (CBM18) and a C-terminal glycoside hydrolase family-19 domain (GH19) with a short linker. To clarify the role of the CBM18 domain in the antifungal activity of chitinase, the recombinant GlxChiB (wild type) and its catalytic domain (CatD) were used in quantitative antifungal assays under different ionic strengths and microscopic observations against the fungus Trichoderma viride. The antifungal activity of the wild type was stronger than that of CatD under all ionic strength conditions used in this assay; however, the antifungal activity of CatD became weaker with increasing ionic strength, whereas that of the wild type was maintained. The results at high ionic strength further verified the contribution of the CBM18 domain to the antifungal ability of GlxChiB. The microscopic observations clearly showed that the wild type acted on both the tips and the lateral wall of fungal hyphae, while CatD acted only on the tips. These results suggest that the CBM18 domain could contribute to the antifungal ability of chitinase through its affinity to the fungal lateral wall by hydrophobic interactions.


Subject(s)
Chitinases , Ficus , Antifungal Agents/pharmacology , Chitin , Chitinases/genetics , Cloning, Molecular , DNA, Complementary , Hypocreales , Latex
12.
J Biosci Bioeng ; 131(4): 348-355, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33281068

ABSTRACT

The chitin-assimilating gram-negative bacterium, Lysobacter sp. MK9-1, was isolated from soil and was the source of a glycoside hydrolase family 19-type chitinase (Chi19MK) gene that is 933-bp long and encodes a 311-residue protein. The deduced amino acid sequence of Chi19MK includes a signal peptide, an uncharacterized sequence, a carbohydrate-binding module family 12-type chitin binding domain, and a catalytic domain. The catalytic domain of Chi19MK is approximately 60% similar to those of ChiB from Burkholderia gladioli CHB101, chitinase N (ChiN) from Chitiniphilus shinanonensis SAY3T, ChiF from Streptomyces coelicolor A3(2), Chi30 from Streptomyces olivaceoviridisis, ChiA from Streptomyces cyaneus SP-27, and ChiC from Streptomyces griseus HUT6037. Chi19MK lacking the signal and uncharacterized sequences (Chi19MKΔNTerm) was expressed in Escherichia coli Rosetta-gami B(DE3), resulting in significant chitinase activity in the soluble fraction. Purified Chi19MKΔNTerm hydrolyzed colloidal chitin and released disaccharide. Furthermore, Chi19MKΔNTerm inhibited hyphal extension in Trichoderma reesei and Schizophyllum commune. Based on quantitative antifungal activity assays, Chi19MKΔNTerm inhibits the growth of Trichoderma viride with an IC50 value of 0.81 µM.


Subject(s)
Antifungal Agents/pharmacology , Chitinases/metabolism , Lysobacter/enzymology , Chitinases/genetics , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Lysobacter/genetics , Schizophyllum/drug effects , Trichoderma/drug effects
13.
J Biosci Bioeng ; 130(4): 352-359, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32522405

ABSTRACT

Aspergillus luchuensis has been used to produce awamori, a distilled liquor, in Okinawa, Japan. Vanillin, derived from ferulic acid (FA) in rice grains, is one of the characteristic flavors in aged and matured awamori, known as kusu. Decarboxylation of FA leads to the production of 4-vinylguaiacol (4-VG), which is converted to vanillin by natural oxidization. However, the mechanism underlying FA conversion to 4-VG has remained unknown in awamori brewing. In our previous studies, we showed that phenolic acid decarboxylase from A. luchuensis (AlPAD) could catalyze the conversion of FA to 4-VG, and that AlPAD is functionally expressed during koji making (Maeda et al., J. Biosci. Bioeng., 126, 162-168, 2018). In this study, to understand the contribution of AlPAD to 4-VG production in awamori brewing, we created an alpad disruptant (Δalpad) and compared its 4-VG productivity to that of the wild-type strain. The amount of 4-VG in the distillate of moromi prepared with the wild-type strain showed a significant increase, proportional to the time required for koji making. In the Δalpad strain, the amount of 4-VG was very small and remained unchanged during the koji making. In an awamori brewing test using koji harvested 42-66 h after inoculation, the contribution of AlPAD to 4-VG production was in the range of 88-94 %. These results indicate that AlPAD plays a key role in 4-VG production during awamori brewing.


Subject(s)
Alcoholic Beverages/microbiology , Aspergillus/enzymology , Carboxy-Lyases/metabolism , Guaiacol/analogs & derivatives , Aspergillus/metabolism , Biocatalysis , Guaiacol/metabolism
14.
Int J Biol Macromol ; 154: 1295-1302, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-31733252

ABSTRACT

PrChiA is an antifungal chitinase obtained from Pteris ryukyuensis, a fern plant. It consists of two N-terminal lysin motif (LysM) domains and a C-terminal catalytic domain of glycoside hydrolase family 18. Previous studies have shown that the deletion of LysM domains or loss of hydrolytic activity causes the loss of the antifungal activity of chitinases. In this study, we produced LysM-domain multimers (LysMn, n = 2-5) and the respective multimer fusion chitinases (LysMn-Cat, n = 1-4), and characterized their enzymatic and antifungal properties. LysMn and LysMn-Cat showed a higher affinity to insoluble chitin than single LysM domain and single catalytic domain alone, respectively. LysMn-Cat hydrolyzed insoluble chitin more efficiently than the catalytic domain alone. Surprisingly, LysMn showed antifungal activity without chitinolytic activity. Further, LysMn-Cat exhibited a stronger antifungal activity than LysMn. Microscopic observation revealed that LysMn attacked only the tips of the fungal hyphae; LysMn-Cat attacked not only the tips, but also the lateral walls around the septa of the fungal hyphae. It is suggested that the LysMn act on the growing point of the hyphal tip through their chitin-binding ability and that the LysMn-Cat act on not only the hyphal tips, but also on the lateral walls through their chitin-hydrolyzing and -binding activities.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Chitinases/chemistry , Chitinases/pharmacology , Protein Multimerization , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacology , Antifungal Agents/metabolism , Catalytic Domain , Chitin/metabolism , Chitinases/metabolism , Hydrolysis , Models, Molecular , Protein Structure, Quaternary , Pteris/enzymology , Recombinant Fusion Proteins/metabolism
15.
Plant Mol Biol ; 97(6): 553-564, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30083952

ABSTRACT

KEY MESSAGE: Euglena gracilis is a unicellular microalga showing characteristics of both plants and animals, and extensively used as a model organism in the research works of biochemistry and molecular biology. Biotechnological applications of E. gracilis have been conducted for production of numerous important compounds. However, chitin-mediated defense system intensively studied in higher plants remains to be investigated in this microalga. Recently, Taira et al. (Biosci Biotechnol Biochem 82:1090-1100, 2018) isolated a unique chitinase gene, comprising two catalytic domains almost homologous to each other (Cat1 and Cat2) and two chitin-binding domains (CBD1 and CBD2), from E. gracilis. We herein examined the mode of action and the specificity of the recombinant Cat2 by size exclusion chromatography and NMR spectroscopy. Both Cat1 and Cat2 appeared to act toward chitin substrate with non-processive/endo-splitting mode, recognizing two contiguous N-acetylglucosamine units at subsites - 2 and - 1. This is the first report on a chitinase having two endo-splitting catalytic domains. A cooperative action of two different endo-splitting domains may be advantageous for defensive action of the E. gracilis chitinase. The unicellular alga, E. gracilis, produces a chitinase consisting of two GH18 catalytic domains (Cat1 and Cat2) and two CBM18 chitin-binding domains (CBD1 and CBD2). Here, we produced a recombinant protein of the Cat2 domain to examine its mode of action as well as specificity. Cat2 hydrolyzed N-acetylglucosamine (A) oligomers (An, n = 4, 5, and 6) and partially N-acetylated chitosans with a non-processive/endo-splitting mode of action. NMR analysis of the product mixture from the enzymatic digestion of chitosan revealed that the reducing ends were exclusively A-unit, and the nearest neighbors of the reducing ends were mostly A-unit but not exclusively. Both A-unit and D-unit were found at the non-reducing ends and the nearest neighbors. These results indicated strong and absolute specificities for subsites - 2 and - 1, respectively, and no preference for A-unit at subsites + 1 and + 2. The same results were obtained from sugar sequence analysis of the individual enzymatic products from the chitosans. The subsite specificities of Cat2 are similar to those of GH18 human chitotriosidase, but differ from those of plant GH18 chitinases. Since the structures of Cat1 and Cat2 resemble to each other (99% similarity in amino acid sequences), Cat1 may hydrolyze the substrate with the same mode of action. Thus, the E. gracilis chitinase appears to act toward chitin polysaccharide chain through a cooperative action of the two endo-splitting catalytic domains, recognizing two contiguous A-units at subsites - 2 and - 1.


Subject(s)
Chitinases/metabolism , Euglena gracilis/enzymology , Chitinases/chemistry , Chitinases/genetics , Chitosan/metabolism , Chromatography, Gel , Euglena gracilis/genetics , Euglena gracilis/metabolism , Magnetic Resonance Spectroscopy , Recombinant Proteins , Substrate Specificity
16.
Biosci Biotechnol Biochem ; 82(10): 1742-1752, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29966504

ABSTRACT

Chitinase-A from a lycophyte Selaginella doederleinii (SdChiA), having molecular mass of 53 kDa, was purified to homogeneity by column chromatography. The cDNA encoding SdChiA was cloned by rapid amplification of cDNA ends and polymerase chain reaction. It consisted of 1477 nucleotides and its open reading frame encoded a polypeptide of 467 amino acid residues. The deduced amino acid sequence indicated that SdChiA consisted of two N-terminal chitin-binding domains and a C-terminal plant class V chitinase catalytic domain, belonging to the carbohydrate-binding module family 18 (CBM18) and glycoside hydrolase family 18 (GH18), respectively. SdChiA had chitin-binding ability. The time-dependent cleavage pattern of (GlcNAc)4 by SdChiA showed that SdChiA specifically recognizes the ß-anomer in the + 2 subsite of the substrate (GlcNAc)4 and cleaves the glycoside bond at the center of the substrate. This is the first report of the occurrence of a family 18 chitinase containing CBM18 chitin-binding domains. ABBREVIATIONS: AtChiC: Arabidopsis thaliana class V chitinase; CBB: Coomassie brilliant blue R250; CBM: carbohydrate binding module family; CrChi-A: Cycas revolute chitinase-A; EaChiA: Equisetum arvense chitinase-A; GH: glycoside hydrolase family, GlxChi-B: gazyumaru latex chitinase-B; GlcNAc: N-acetylglucosamine; HPLC: high performance liquid chromatography; LysM; lysin motif; MtNFH1: Medicago truncatula ecotypes R108-1 chitinase; NCBI: national center for biotechnology information; NF: nodulation factor; NtChiV: Nicotiana tabacum class V chitinase; PCR: polymerase chain reaction; PrChi-A: Pteris ryukyuensis chitinase-A; RACE: rapid amplification of cDNA ends; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SdChiA: Selaginella doederleinii chitinase-A.


Subject(s)
Chitinases/genetics , DNA, Complementary/genetics , Selaginellaceae/enzymology , Selaginellaceae/genetics , Amino Acid Sequence , Chitin/metabolism , Chitinases/chemistry , Chitinases/metabolism , Chromatography, High Pressure Liquid , Cloning, Molecular , DNA, Plant/genetics , Electrophoresis, Polyacrylamide Gel , Open Reading Frames , Polymerase Chain Reaction , Sequence Homology, Amino Acid , Substrate Specificity
17.
J Agric Food Chem ; 66(22): 5699-5706, 2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29756783

ABSTRACT

CJP-4 is an allergen found in pollen of the Japanese cedar Cryptomeria japonica. The protein is a two-domain family GH19 (class IV) Chitinase consisting of an N-terminal CBM18 domain and a GH19 catalytic domain. Here, we produced recombinant CJP-4 and CBM18-truncated CJP-4 (CJP-4-Cat) proteins. In addition to solving the crystal structure of CJP-4-Cat by X-ray crystallography, we analyzed the ability of both proteins to hydrolyze chitin oligosaccharides, (GlcNAc) n, polysaccharide substrates, glycol chitin, and ß-chitin nanofiber and examined their inhibitory activity toward fungal growth. Truncation of the CBM18 domain did not significantly affect the mode of (GlcNAc) n hydrolysis. However, significant effects were observed when we used the polysaccharide substrates. The activity of CJP-4 toward the soluble substrate, glycol chitin, was lower than that of CJP-4-Cat. In contrast, CJP-4 exhibited higher activity toward ß-chitin nanofiber, an insoluble substrate, than did CJP-4-Cat. Fungal growth was strongly inhibited by CJP-4 but not by CJP-4-Cat. These results indicate that the CBM18 domain assists the hydrolysis of insoluble substrate and the antifungal action of CJP-4-Cat by binding to chitin. CJP-4-Cat was found to have only two loops (loops I and III), as reported for ChiA, an allergenic class IV Chitinase from maize.


Subject(s)
Chitinases/chemistry , Cryptomeria/enzymology , Plant Proteins/chemistry , Pollen/enzymology , Amino Acid Sequence , Catalytic Domain , Chitinases/genetics , Chitinases/metabolism , Cryptomeria/chemistry , Cryptomeria/genetics , Hydrolysis , Models, Molecular , Molecular Sequence Data , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/chemistry , Protein Binding , Sequence Homology, Amino Acid , Substrate Specificity
18.
Biosci Biotechnol Biochem ; 82(7): 1090-1100, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29621939

ABSTRACT

A cDNA of putative chitinase from Euglena gracilis, designated EgChiA, encoded 960 amino acid residues, which is arranged from N-terminus in the order of signal peptide, glycoside hydrolase family 18 (GH18) domain, carbohydrate binding module family 18 (CBM18) domain, GH18 domain, CBM18 domain, and transmembrane helix. It is likely that EgChiA is anchored on the cell surface. The recombinant second GH18 domain of EgChiA, designated as CatD2, displayed optimal catalytic activity at pH 3.0 and 50 °C. The lower the polymerization degree of the chitin oligosaccharides [(GlcNAc)4-6] used as the substrates, the higher was the rate of degradation by CatD2. CatD2 degraded chitin nanofibers as an insoluble substrate, and it produced only (GlcNAc)2 and GlcNAc. Therefore, we speculated that EgChiA localizes to the cell surface of E. gracilis and is involved in degradation of chitin polymers into (GlcNAc)2 or GlcNAc, which are easily taken up by the cells.


Subject(s)
Chitinases/metabolism , DNA, Complementary/genetics , Euglena gracilis/enzymology , Acetylglucosamine/metabolism , Amino Acid Sequence , Antifungal Agents/pharmacology , Base Sequence , Catalysis , Catalytic Domain , Chitin/metabolism , Chitinases/genetics , Chitinases/pharmacology , Chromatography, High Pressure Liquid , Cloning, Molecular , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Hydrogen-Ion Concentration , Nanofibers , Oligosaccharides/metabolism , Polymerization , Proteolysis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Temperature
19.
Planta ; 247(6): 1423-1438, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29536219

ABSTRACT

MAIN CONCLUSION: Latexes in immature fruit, young petioles and lignified trunks of fig trees protect the plant using toxic proteins and metabolites in various organ-dependent ways. Latexes from plants contain high amounts of toxic proteins and metabolites, which attack microbes and herbivores after exudation at pest-induced wound sites. The protein and metabolite constituents of latexes are highly variable, depending on the plant species and organ. To determine the diversity of latex-based defense strategies in fig tree (Ficus carica) organs, we conducted comparative proteomic, transcriptomic and metabolomic analyses on latexes isolated from immature fruit, young petioles and lignified trunks of F. carica after constructing a unigene sequence library using RNA-seq data. Trypsin inhibitors were the most abundant proteins in petiole latex, while cysteine proteases ("ficins") were the most abundant in immature fruit and trunk latexes. Galloylglycerol, a possible defense-related metabolite, appeared to be highly accumulated in all three latexes. The expression levels of pathogenesis-related proteins were highest in the latex of trunk, suggesting that this latex had adapted a defensive role against microbe attacks. Although young petioles and immature fruit are both unlignified soft organs, and potential food for herbivorous insects, unigenes for the sesquiterpenoid pathway, which likely produces defense-associated volatiles, and the phenylpropanoid pathway, which produces toxic furanocoumarins, were expressed less in immature fruit latex. This difference may indicate that while petioles and fruit protect the plant from attack by herbivores, the fruit must also attract insect pollinators at younger stages and animals after ripening. We also suggest possible candidate transcription factors and signal transduction proteins that are involved in the differential expression of the unigenes.


Subject(s)
Ficus/immunology , Gene Expression Profiling , Latex/metabolism , Metabolomics , Proteomics , Animals , Ficus/genetics , Ficus/metabolism , Fruit/chemistry , Fruit/genetics , Fruit/immunology , Fruit/metabolism , Herbivory , Insecta/physiology , Organ Specificity , Plant Stems/chemistry , Plant Stems/genetics , Plant Stems/immunology , Plant Stems/metabolism , Trees
20.
J Biosci Bioeng ; 126(2): 162-168, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29519654

ABSTRACT

Awamori is a traditional distilled liquor in the Ryukyu Islands, made from steamed rice by the action of the black-koji mold Aspergillus luchuensis and awamori yeast Saccharomyces cerevisiae. One of the specific flavors in aged awamori kusu is vanillin, which is derived from ferulic acid (FA) in rice grains. FA is released from the cell wall material in the rice grain by ferulic acid esterase produced by A. luchuensis. Through decarboxylation of FA, 4-vinylguaiacol (4-VG) is produced, which is transferred to the distilled liquor, and converted to vanillin by natural oxidization during the aging process. However, the actual mechanism for conversion of FA to 4-VG in the awamori brewing process is unknown. A genetic sequence having homology to the phenolic acid decarboxylase (PAD)-encoding region from bacteria and the yeast Candida guilliermondii has been identified in A. luchuensis mut. kawachii. In the present study, recombinant PAD from A. luchuensis, designated as AlPAD, expressed as a homodimer, catalyzed the conversion of FA to 4-VG, displayed optimal catalytic activity at pH 5.7 and 40°C, and was stable up to 50°C. Both rice bran and FA could induce the bioconversion of FA to 4-VG and the expression of AlPAD in A. luchuensis. The amount of AlPAD determined using western blotting correlated with the level of FA decarboxylase activity during koji production. In awamori brewing process, AlPAD might be responsible for a part of the conversion of FA to 4-VG.


Subject(s)
Aspergillus/genetics , Carboxy-Lyases/biosynthesis , Carboxy-Lyases/genetics , Alcoholic Beverages , Aspergillus/enzymology , Benzaldehydes/metabolism , Candida/metabolism , Carboxy-Lyases/isolation & purification , Carboxy-Lyases/metabolism , Carboxylic Ester Hydrolases/metabolism , Cloning, Molecular , Coumaric Acids/metabolism , Edible Grain , Enzyme Induction , Guaiacol/analogs & derivatives , Guaiacol/metabolism , Oryza/enzymology , Oryza/genetics , Oryza/metabolism , Saccharomyces cerevisiae
SELECTION OF CITATIONS
SEARCH DETAIL
...