Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Astrobiology ; 22(11): 1351-1362, 2022 11.
Article in English | MEDLINE | ID: mdl-36264546

ABSTRACT

A key part of the search for extraterrestrial life is the detection of organic molecules since these molecules form the basis of all living things on Earth. Instrument suites such as SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) onboard the NASA Perseverance rover and the Mars Organic Molecule Analyzer onboard the future ExoMars Rosalind Franklin rover are designed to detect organic molecules at the martian surface. However, size, mass, and power limitations mean that these instrument suites cannot yet match the instrumental capabilities available in Earth-based laboratories. Until Mars Sample Return, the only martian samples available for study on Earth are martian meteorites. This is a collection of largely basaltic igneous rocks that have been exposed to varying degrees of terrestrial contamination. The low organic molecule abundance within igneous rocks and the expectation of terrestrial contamination make the identification of martian organics within these meteorites highly challenging. The Lafayette martian meteorite exhibits little evidence of terrestrial weathering, potentially making it a good candidate for the detection of martian organics despite uncertainties surrounding its fall history. In this study, we used ultrapure solvents to extract organic matter from triplicate samples of Lafayette and analyzed these extracts via hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS). Two hundred twenty-four metabolites (organic molecules) were detected in Lafayette at concentrations more than twice those present in the procedural blanks. In addition, a large number of plant-derived metabolites were putatively identified, the presence of which supports the unconfirmed report that Lafayette fell in a semirural location in Indiana. Remarkably, the putative identification of the mycotoxin deoxynivalenol (or vomitoxin), alongside the report that the collector was possibly a student at Purdue University, can be used to identify the most likely fall year as 1919.


Subject(s)
Mars , Meteoroids , Humans , Extraterrestrial Environment , Earth, Planet , Universities
2.
Astrobiology ; 22(4): 399-415, 2022 04.
Article in English | MEDLINE | ID: mdl-35100042

ABSTRACT

Meteorites that fall to Earth quickly become contaminated with terrestrial microorganisms. These meteorites are out of chemical equilibrium in the environments where they fall, and equilibration promotes formation of low-temperature alteration minerals that can entomb contaminant microorganisms and thus preserve them as microfossils. Given the well-understood chemistry of meteorites and their recent discovery on Mars by rovers, a similarly weathered meteorite on Mars could preserve organic and fossil evidence of a putative past biosphere at the martian surface. Here, we used several techniques to assess the potential of alteration minerals to preserve microfossils and biogenic organics in terrestrially weathered ordinary chondrites from the Nullarbor Plain, Australia. We used acid etching of ordinary chondrites to reveal entombed fungal hyphae, modern biofilms, and diatoms within alteration minerals. We employed synchrotron X-ray fluorescence microscopy of alteration mineral veins to map the distribution of redox-sensitive elements of relevance to chemolithotrophic organisms, such as Mn-cycling bacteria. We assessed the biogenicity of fungal hyphae within alteration veins using a combination of Fourier-transform infrared spectroscopy and pyrolysis gas chromatography-mass spectrometry, which showed that alteration minerals sequester and preserve organic molecules at various levels of decomposition. Our combined analyses results show that fossil microorganisms and the organic molecules they produce are preserved within calcite-gypsum admixtures in meteorites. Furthermore, the distributions of redox-sensitive elements (e.g., Mn) within alteration minerals are localized, which qualitatively suggests that climatically or microbially facilitated element mobilization occurred during the meteorite's residency on Earth. If returned as part of a sample suite from the martian surface, ordinary chondrites could preserve similar, recognizable evidence of putative past life and/or environmental change.


Subject(s)
Mars , Meteoroids , Earth, Planet , Exobiology/methods , Extraterrestrial Environment , Minerals/analysis
3.
Astrobiology ; 20(3): 364-374, 2020 03.
Article in English | MEDLINE | ID: mdl-31873039

ABSTRACT

The advent of microfluidics has revolutionized the way we understand how microorganisms propagate through microporous spaces. Here, we apply this understanding to the study of how endolithic environmental microorganisms colonize the interiors of sterile rock. The substrates used for our study are stony meteorites from the Nullarbor Plain, Australia; a semiarid limestone karst that provides an ideal setting for preserving meteorites. Periodic flooding of the Nullarbor provides a mechanism by which microorganisms and exogenous nutrients may infiltrate meteorites. Our laboratory experiments show that environmental microorganisms reach depths greater than 400 µm by propagating through existing brecciation, passing through cracks no wider than the diameter of a resident cell (i.e., ∼5 µm). Our observations are consistent with the propagation of these eukaryotic cells via growth and cell division rather than motility. The morphology of the microorganisms changed as a result of propagation through micrometer-scale cracks, as has been observed previously for bacteria on microfluidic chips. It has been suggested that meteorites could have served as preferred habitats for microorganisms on ancient Mars. Based on our results, the depths reached by terrestrial microorganisms within meteorites would be sufficient to mitigate against the harmful effects of ionizing radiation, such as UV light, in Earth's deserts and potentially on Mars, if similar processes of microbial colonization had once been active there. Thus, meteorites landing in ancient lakes on Mars, that later dried out, could have been some of the last inhabited locations on the surface, serving as refugia before the planet's surface became inhospitable. Finally, our observations suggest that terrestrial microorganisms can colonize very fine cracks within meteorites (and potentially spaceships and rovers) on unexpectedly short timescales, with important implications for both recognition of extraterrestrial life in returned geological samples and planetary protection.


Subject(s)
Eukaryota/isolation & purification , Exobiology/methods , Extraterrestrial Environment/chemistry , Meteoroids , Microfluidic Analytical Techniques , Australia , Calcium Carbonate/chemistry , Mars , Porosity , Surface Properties
4.
Front Microbiol ; 8: 1227, 2017.
Article in English | MEDLINE | ID: mdl-28713354

ABSTRACT

Finding fresh, sterilized rocks provides ecologists with a clean slate to test ideas about first colonization and the evolution of soils de novo. Lava has been used previously in first colonizer studies due to the sterilizing heat required for its formation. However, fresh lava typically falls upon older volcanic successions of similar chemistry and modal mineral abundance. Given enough time, this results in the development of similar microbial communities in the newly erupted lava due to a lack of contrast between the new and old substrates. Meteorites, which are sterile when they fall to Earth, provide such contrast because their reduced and mafic chemistry commonly differs to the surfaces on which they land; thus allowing investigation of how community membership and structure respond to this new substrate over time. We conducted 16S rRNA gene analysis on meteorites and soil from the Nullarbor Plain, Australia. We found that the meteorites have low species richness and evenness compared to soil sampled from directly beneath each meteorite. Despite the meteorites being found kilometers apart, the community structure of each meteorite bore more similarity to those of other meteorites (of similar composition) than to the community structure of the soil on which it resided. Meteorites were dominated by sequences that affiliated with the Actinobacteria with the major Operational Taxonomic Unit (OTU) classified as Rubrobacter radiotolerans. Proteobacteria and Bacteroidetes were the next most abundant phyla. The soils were also dominated by Actinobacteria but to a lesser extent than the meteorites. We also found OTUs affiliated with iron/sulfur cycling organisms Geobacter spp. and Desulfovibrio spp. This is an important finding as meteorites contain abundant metal and sulfur for use as energy sources. These ecological findings demonstrate that the structure of the microbial community in these meteorites is controlled by the substrate, and will not reach homeostasis with the Nullarbor community, even after ca. 35,000 years. Our findings show that meteorites provide a unique, sterile substrate with which to test ideas relating to first-colonizers. Although meteorites are colonized by microorganisms, the microbial population is unlikely to match the community of the surrounding soil on which they fall.

SELECTION OF CITATIONS
SEARCH DETAIL
...