Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Acoust Soc Am ; 155(1): 575-587, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38259125

ABSTRACT

This paper reports on the use of a circular microphone array to analyze the reflections from a pipe defect with enhanced resolution. A Bayesian maximum a posteriori algorithm is combined with the mode decomposition approach to localize pipe defects with six or fewer microphones. Unlike all previous acoustic reflectometry techniques, which only estimate the location of a pipe defect along the pipe, the proposed method uses the phase information about the wave propagated in the form of the first non-axisymmetric mode to estimate its circumferential position as well as axial location. The method is validated against data obtained from a laboratory measurement in a 150 mm diameter polyvinyl chloride pipe with a 20% in-pipe blockage and 100 mm lateral connection. The accuracy of localization of the lateral connection and blockage attained in this measurement was better than 2% of the axial sensing distance and 9° error in terms of the circumferential position. The practical significance of this approach is that it can be implemented remotely on an autonomous inspection robot so that accurate axial location and circumferential position of lateral connections and small blockages can be estimated with a computationally efficient algorithm.

2.
Sci Total Environ ; 912: 168565, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-37979848

ABSTRACT

Rivers are at risk from a variety of pollution sources. Faecal pollution is of particular concern since it disperses pathogenic microorganisms in the aquatic environment. Currently, faecal pollution levels in rivers is monitored using faecal indicator bacteria (FIB) that do not offer information about pollution sources and associated risks. This study used a combined molecular approach, along with measurements of water quality, to gain information on pollution sources, and risk levels, in a newly designated recreational bathing site in the River Wharfe (UK). Physico-chemical parameters were monitored in situ, with water quality multiparameter monitoring sondes installed during the 2021 bathing season. The molecular approach was based on quantitative PCR (qPCR)-aided Microbial Source Tracking (MST) and 16S rRNA gene metabarcoding to obtain a fingerprint of bacterial communities and identify potential bioindicators. The analysis from the water quality sondes showed that ammonium was the main parameter determining the distribution of FIB values. Lower faecal pollution levels were detected in the main river when compared to tributaries, except for samples in the river located downstream of a wastewater treatment plant. The faecal pollution type (anthropogenic vs. zoogenic) changed the diversity and the structure of bacterial communities, giving a distinctive fingerprint that can be used to inform source. DNA-based methods showed that the presence of human-derived bacteria was associated with Escherichia coli spikes, coinciding with higher bacterial diversity and the presence of potential pathogenic bacteria mainly of the genus Mycobacterium, Aeromonas and Clostridium. Samples collected after a heavy rainfall event were associated with an increase in Bacteroidales, which are markers of faecal pollution, including Bacteroides graminisolvens, a ruminant marker associated with surface run-off from agricultural sources. The combined use of qPCR and 16S rRNA sequencing was able to identify pollution sources, and novel bacterial indicators, thereby aiding decision-making and management strategies in recreational bathing rivers.


Subject(s)
Environmental Monitoring , Water Microbiology , Humans , RNA, Ribosomal, 16S , Environmental Monitoring/methods , Water Quality , Escherichia coli/genetics , Bacteria/genetics , Feces/microbiology , Water Pollution/analysis
3.
Phys Rev Lett ; 131(17): 171401, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37955496

ABSTRACT

Coating thermal noise is one of the dominant noise sources in current gravitational wave detectors and ultimately limits their ability to observe weaker or more distant astronomical sources. This Letter presents investigations of TiO_{2} mixed with SiO_{2} (TiO_{2}:SiO_{2}) as a coating material. We find that, after heat treatment for 100 h at 850 °C, thermal noise of a highly reflective coating comprising of TiO_{2}:SiO_{2} and SiO_{2} reduces to 76% of the current levels in the Advanced LIGO and Advanced Virgo detectors-with potential for reaching 45%, if we assume the mechanical loss of state-of-the-art SiO_{2} layers. Furthermore, those coatings show low optical absorption of <1 ppm and optical scattering of ≲5 ppm. Notably, we still observe excellent optical and thermal noise performance following crystallization in the coatings. These results show the potential to meet the parameters required for the next upgrades of the Advanced LIGO and Advanced Virgo detectors.

4.
Appl Opt ; 62(7): B209-B221, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37132933

ABSTRACT

Coating thermal noise (CTN) in amorphous coatings is a drawback hindering their application in precision experiments such as gravitational wave detectors (GWDs). Mirrors for GWDs are Bragg's reflectors consisting of a bilayer-based stack of high- and low-refractive-index materials showing high reflectivity and low CTN. In this paper, we report the characterization of morphological, structural, optical, and mechanical properties of high-index materials such as scandium sesquioxide and hafnium dioxide and a low-index material such as magnesium fluoride deposited by plasma ion-assisted electron beam evaporation. We also evaluate their properties under different annealing treatments and discuss their potential for GWDs.

5.
Water Sci Technol ; 83(12): 2963-2979, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34185692

ABSTRACT

This study aims to assess the transportability of food waste disposer particles within a sewer system. A series of laboratory studies has examined the physical characteristics of solid particles derived from domestic food waste disposers. Particle size distributions and maximum settling velocity characteristics were measured for 18 common food types, and stored in a publicly accessible database. Particle size distributions are shown to fit well with a 2-parameter Gamma distribution. Settling velocity is generally higher for larger particles, except when particle density and sphericity change. For most food types, particle specific gravity was close to unity. Egg shell particles had a significantly higher specific gravity. This information, combined with the particle size data have been used to show that there is a very low likelihood of food waste particle deposition in sewers during normal operational flows, other than temporary transient deposits of egg shell particles.


Subject(s)
Refuse Disposal , Sewage , Food , Particle Size
6.
Water Res ; 194: 116885, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33607388

ABSTRACT

Uncertainty in urban drainage modelling studies presents challenges to decision makers with limited investment resources attempting to achieve regulatory compliance for intermittent discharges from Combined Sewer Overflows. This paper presents the development of a new decision-making approach to address two key challenges encountered when attempting to manage sewer overflows, these are (i) the implications of different risk preferences of individuals for investment decisions; and (ii) how to utilize information on uncertainties in system performance predictions due to input or parameter uncertainty while comparing decision alternatives. The developed decision-making approach uses a multi-objective decision formulation to analyse the trade-off between investment and predicted system performance under uncertainty while accounting for risk preferences of the individual decision maker. The proposed uncertainty based decision-making approach is able to incorporate any threshold-based regulatory criteria for intermittent sewer overflows and is illustrated using a case study catchment in Luxembourg. The results from this case study highlight the significant impact of individuals' risk preferences on the level of investment recommended to comply with threshold-based regulatory criteria. It was demonstrated that differing levels of risk-averseness can result in a substantial increase in investment cost for solutions that are regulatory compliant. This paper demonstrates the need for water companies to rigorously define a corporate risk preference strategy to ensure consistent investment decisions across their operations; otherwise, individual preferences may cause significant over-investment to meet the same regulatory goals.


Subject(s)
Uncertainty , Humans , Luxembourg
7.
Sensors (Basel) ; 21(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33430049

ABSTRACT

Combined sewer overflow structures (CSO) play an important role in sewer networks. When the local capacity of a sewer system is exceeded during intense rainfall events, they act as a "safety valve" and discharge excess rainfall run-off and wastewater directly to a natural receiving water body, thus preventing widespread urban flooding. There is a regulatory requirement that solids in CSO spills must be small and their amount strictly controlled. Therefore, a vast majority of CSOs in the UK contain screens. This paper presents the results of a feasibility study of using low-cost, low-energy acoustic sensors to remotely assess the condition of CSO screens to move to cost-effective reactive maintenance visits. In situ trials were carried out in several CSOs to evaluate the performance of the acoustic sensor under realistic screen and flow conditions. The results demonstrate that the system is robust within ±2.5% to work successfully in a live CSO environment. The observed changes in the screen condition resulted in 8-39% changes in the values of the coefficient in the proposed acoustic model. These changes are detectable and consistent with observed screen and hydraulic data. This study suggested that acoustic-based sensing can effectively monitor the CSO screen blockage conditions and hence reduce the risk of non-compliant CSO spills.

8.
Phys Rev Lett ; 125(1): 011102, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32678642

ABSTRACT

Thermal noise associated with the mechanical loss of current highly reflective mirror coatings is a critical limit to the sensitivity of gravitational-wave detectors. Several alternative coating materials show potential for reducing thermal noise, but cannot be used due to their high optical absorption. Multimaterial coatings have been proposed to enable the use of such materials to reduce thermal noise while minimizing their impact on the total absorption of the mirror coating. Here we present experimental verification of the multimaterial concept, by integrating aSi into a highly reflective SiO_{2} and Ta_{2}O_{5} multilayer coating. We show a significant thermal noise improvement and demonstrate consistent optical and mechanical performance. The multimaterial coating survives the heat treatment required to minimize the absorption of the aSi layers, with no adverse effects from the different thermomechanical properties of the three materials.

9.
Water Sci Technol ; 80(12): 2344-2351, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32245926

ABSTRACT

Heat recovery from combined sewers has a significant potential for practical renewable energy provision as sources of heat demand and sewer pipes are spread across urban areas. Sewers are continuously recharged with relatively hot wastewater, as well as interacting with heat sources from surrounding air and soil. However, the potential effects of modifying sewage temperature on in-sewer processes have received little attention. The deposition of fats, oils and greases (FOGs) and hydrogen sulphide formation are biochemical processes and are thus influenced by temperature. This paper utilises a case study approach to simulate anticipated temperature reductions in a sewer network due to heat recovery. A laboratory investigation into the formation of FOG deposits at temperatures varying between 5 °C and 20 °C provided mixed results, with only a weak temperature influence, highlighting the need for more research to fully understand the influence of the wastewater composition as well as temperature on FOG deposit formation. A separate modelling investigation into the formation of hydrogen sulphide when inflow temperature is varied between 5 °C and 20 °C showed considerable reductions in hydrogen sulphide formation. Hence, heat extraction from sewers could be a promising method for managing some in-sewer processes, combined with traditional methods such as chemical dosing.


Subject(s)
Hot Temperature , Sewage , Fats , Oils , Wastewater
10.
Water Res ; 150: 368-379, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30550867

ABSTRACT

This paper aims to stimulate discussion based on the experiences derived from the QUICS project (Quantifying Uncertainty in Integrated Catchment Studies). First it briefly discusses the current state of knowledge on uncertainties in sub-models of integrated catchment models and the existing frameworks for analysing uncertainty. Furthermore, it compares the relative approaches of both building and calibrating fully integrated models or linking separate sub-models. It also discusses the implications of model linkage on overall uncertainty and how to define an acceptable level of model complexity. This discussion includes, whether we should shift our attention from uncertainties due to linkage, when using linked models, to uncertainties in model structure by necessary simplification or by using more parameters. This discussion attempts to address the question as to whether there is an increase in uncertainty by linking these models or if a compensation effect could take place and that overall uncertainty in key water quality parameters actually decreases. Finally, challenges in the application of uncertainty analysis in integrated catchment water quality modelling, as encountered in this project, are discussed and recommendations for future research areas are highlighted.


Subject(s)
Models, Theoretical , Water Quality , Uncertainty
11.
Water Res ; 145: 618-630, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30199806

ABSTRACT

A computational network heat transfer model was utilised to model the potential of heat energy recovery at multiple locations from a city scale combined sewer network. The uniqueness of this network model lies in its whole system validation and implementation for seasonal scenarios in a large sewer network. The network model was developed, on the basis of a previous single pipe heat transfer model, to make it suitable for application in large sewer networks and its performance was validated in this study by predicting the wastewater temperature variation across the network. Since heat energy recovery in sewers may impact negatively on wastewater treatment processes, the viability of large scale heat recovery was assessed by examining the distribution of the wastewater temperatures throughout a 3000 pipe network, serving a population equivalent of 79500, and at the wastewater treatment plant inlet. Three scenarios; winter, spring and summer were modelled to reflect seasonal variations. The model was run on an hourly basis during dry weather. The modelling results indicated that potential heat energy recovery of around 116, 160 & 207 MWh/day may be obtained in January, March and May respectively, without causing wastewater temperature either in the network or at the inlet of the wastewater treatment plant to reach a level that was unacceptable to the water utility.


Subject(s)
Hot Temperature , Sewage , Cities , Models, Theoretical , Seasons , Wastewater
12.
Water Res ; 143: 561-569, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30007259

ABSTRACT

Exponential wash-off models are the most widely used method to predict sediment wash-off from urban surfaces. In spite of many studies, there is still a lack of knowledge on the effect of external drivers such as rainfall intensity and surface slope on wash-off predictions. In this study, a more physically realistic "structure" is added to the original exponential wash-off model (OEM) by replacing the invariant parameters with functions of rainfall intensity and catchment surface slope, so that the model can better represent catchment and rainfall conditions without the need for lookup tables and interpolation/extrapolation. In the proposed new exponential model (NEM), two such functions are introduced. One function describes the maximum fraction of the initial load that can be washed off by a rainfall event for a given slope and the other function describes the wash-off rate during a rainfall event for a given slope. The parameters of these functions are estimated using data collected from a series of laboratory experiments carried out using an artificial rainfall generator, a 1 m2 bituminous road surface and a continuous wash-off measuring system. These experimental data contain high temporal resolution measurements of wash-off fractions for combinations of five rainfall intensities ranging from 33 to 155 mm/h and three catchment slopes ranging from 2 to 8%. Bayesian inference, which allows the incorporation of prior knowledge, is implemented to estimate parameter values. Explicitly accounting for model bias and measurement errors, a likelihood function representative of the wash-off process is formulated, and the uncertainty in the prediction of the NEM is quantified. The results of this study show: 1) even when the OEM is calibrated for every experimental condition, the NEM's performance, with parameter values defined by functions, is comparable to the OEM. 2) Verification indices for estimates of uncertainty associated with the NEM suggest that the error model used in this study is able to capture the uncertainty well.


Subject(s)
Models, Theoretical , Rain , Bayes Theorem , Calibration , Environmental Monitoring/methods , Geologic Sediments , Uncertainty , Water Movements
13.
Int J Numer Methods Fluids ; 83(1): 3-27, 2017 Jan 10.
Article in English | MEDLINE | ID: mdl-28066121

ABSTRACT

A numerical model based on the smoothed particle hydrodynamics method is developed to simulate depth-limited turbulent open channel flows over hydraulically rough beds. The 2D Lagrangian form of the Navier-Stokes equations is solved, in which a drag-based formulation is used based on an effective roughness zone near the bed to account for the roughness effect of bed spheres and an improved sub-particle-scale model is applied to account for the effect of turbulence. The sub-particle-scale model is constructed based on the mixing-length assumption rather than the standard Smagorinsky approach to compute the eddy-viscosity. A robust in/out-flow boundary technique is also proposed to achieve stable uniform flow conditions at the inlet and outlet boundaries where the flow characteristics are unknown. The model is applied to simulate uniform open channel flows over a rough bed composed of regular spheres and validated by experimental velocity data. To investigate the influence of the bed roughness on different flow conditions, data from 12 experimental tests with different bed slopes and uniform water depths are simulated, and a good agreement has been observed between the model and experimental results of the streamwise velocity and turbulent shear stress. This shows that both the roughness effect and flow turbulence should be addressed in order to simulate the correct mechanisms of turbulent flow over a rough bed boundary and that the presented smoothed particle hydrodynamics model accomplishes this successfully.

14.
Water Sci Technol ; 2017(1): 87-98, 2017 Apr.
Article in English | MEDLINE | ID: mdl-29698224

ABSTRACT

Flows in manholes are complex and may include swirling and recirculation flow with significant turbulence and vorticity. However, how these complex 3D flow patterns could generate different energy losses and so affect flow quantity in the wider sewer network is unknown. In this work, 2D3C stereo Particle Image Velocimetry measurements are made in a surcharged scaled circular manhole. A computational fluid dynamics (CFD) model in OpenFOAM® with four different Reynolds Averaged Navier Stokes (RANS) turbulence model is constructed using a volume of fluid model, to represent flows in this manhole. Velocity profiles and pressure distributions from the models are compared with the experimental data in view of finding the best modelling approach. It was found among four different RANS models that the re-normalization group (RNG) k-ɛ and k-ω shear stress transport (SST) gave a better approximation for velocity and pressure.


Subject(s)
Computer Simulation , Drainage, Sanitary , Hydrodynamics , Models, Theoretical , Pressure , Rheology , Stress, Mechanical , Waste Disposal, Fluid
15.
Microbiologyopen ; 5(4): 616-25, 2016 08.
Article in English | MEDLINE | ID: mdl-27063341

ABSTRACT

This study describes the temporal and spatial variability of bacterial communities within a combined sewer system in England. Sampling was conducted over 9 months in a sewer system with intensive monitoring of hydraulic conditions. The bacterial communities were characterized by 16S rRNA gene-targeted terminal restriction fragment length polymorphism analysis. These data were related to the hydraulic data as well as the sample type, location, and time. Temporal and spatial variation was observed between and within wastewater communities and biofilm communities. The bacterial communities in biofilm were distinctly different from the communities in wastewater and exhibited greater spatial variation, while the wastewater communities exhibited variability between different months of sampling. This study highlights the variation of bacterial communities between biofilm and wastewater, and has shown both spatial and temporal variations in bacterial communities in combined sewers. The temporal variation is of interest for in-sewer processes, for example, sewer odor generation, as field measurements for these processes are often carried out over short durations and may therefore not capture the influence of this temporal variation of the bacterial communities.


Subject(s)
Bacteria/classification , Bacteria/genetics , Microbiota/genetics , Sewage/microbiology , Biofilms , England , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Water Microbiology
16.
J Acoust Soc Am ; 134(2): 939-49, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23927093

ABSTRACT

In this paper a derivation of the attenuation factor in a waveguide with stochastic walls is presented. The perturbation method and Fourier analysis are employed to derive asymptotically consistent boundary-value problems at each asymptotic order. The derived approximation predicts the attenuation of the propagating mode in a rough waveguide through a correction to the eigenvalue corresponding to smooth walls. The proposed approach can be used to derive results that are consistent with those obtained by Bass et al. [IEEE Trans. Antennas Propag. 22, 278-288 (1974)]. The novelty of the method is that it does not involve the integral Dyson-type equation and, as a result, the large number of statistical moments included in the equation in the form of the mass operator of the volume scattering theory. The derived eigenvalue correction is described by the correlation function of the randomly rough surface. The averaged solution in the plane wave regime is approximated by the exponential function dependent on the derived eigenvalue correction. The approximations are compared with numerical results obtained using the finite element method (FEM). An approach to retrieve the correct deviation in roughness height and correlation length from multiple numerical realizations of the stochastic surface is proposed to account for the oversampling of the rough surface occurring in the FEM meshing procedure.


Subject(s)
Acoustics , Sound , Computer Simulation , Finite Element Analysis , Fourier Analysis , Models, Statistical , Motion , Numerical Analysis, Computer-Assisted , Scattering, Radiation , Stochastic Processes , Time Factors
17.
Environ Technol ; 32(1-2): 133-44, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21473276

ABSTRACT

Sewer systems represent an essential component of modern society. They have a major impact on our quality of life by preventing serious illnesses caused by waterborne diseases, by protecting the environment, and by enabling economic and social development through reducing flood risk. In the UK, systems are normally large and complex and, because of the long lifespan of these assets, their performance and hence their management are influenced by long-term environmental and urban changes. Recent work has focussed on the long-term changes in the hydraulic performance of these systems in response to climate change, e.g. rainfall and economic development. One climate-related driver that has received little attention is temperature, which may in itself have a complex dependence on factors such as rainfall. This study uses Biolog EcoPlates to investigate the effect of different temperatures (4 degrees C, 24 degrees C and 30 degrees C) on the carbon substrate utilization profiles of bacterial communities within sewer sediment deposits. Distinct differences in the metabolic profiles across the different temperatures were observed. Increasing temperature resulted in a shift in biological activity with an increase in the number of different carbon sources that can be utilized. Certain carboxylic and amino acids, however, did not support growth, regardless of temperature. Distinct differences in carbon utilization profiles were also found within sewers that have similar inputs. Therefore, this study has demonstrated that the carbon utilization profile for microbial communities found within sewer sediment deposits is dependent on both temperature and spatial variations.


Subject(s)
Bioreactors/microbiology , Organic Chemicals/metabolism , Sewage/microbiology , Carbon/metabolism , Cluster Analysis , Metabolome , Organic Chemicals/chemistry , Sewage/chemistry , Temperature
18.
Water Sci Technol ; 57(9): 1317-27, 2008.
Article in English | MEDLINE | ID: mdl-18495994

ABSTRACT

The paper is focussed on the concept of defining the "predictability" of sediment transport. Engineers are faced with a number of sediment transport formulas derived from different tests and described as suitable for application in sewers. Bed and suspended load formulas vary in form and performance, generally depending on the data sets that were used to calibrated them. As different sediment types have been tested no single, generally valid formula has been established so far. Formulas are distributed in the scientific literature and are often reported without the information necessary to define their range of potential applicability. Therefore, this paper along with analysing the formulas available, will also comment on the assumptions used in their development as well as the reliability of their underlying data to aid engineers in the selection of the most appropriate sediment transport formulae to correspond with the environment in which they are working.


Subject(s)
Geologic Sediments/chemistry , Sewage/chemistry , Water Movements , Models, Theoretical , Reproducibility of Results
19.
Water Res ; 39(20): 5221-31, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16309729

ABSTRACT

The erosion behaviour of various fine-grained sediment deposits has been investigated in laboratory experiments. This work mainly focused on tests using sewer sediment in which strong biochemical reactions were observed during the deposit formation period. A small number of initial tests were conducted in which the deposits were made from mixtures of "clean" mineral and organic sediments. The erosion behaviour observed in these tests was compared with the erosion characteristics for sediments taken from deposits in a sewer. The impact of the biological processes on physical properties such as bulk density, water content, deposit structure and the erosive behaviour as a function of bed shear stress are quantified and discussed. Based on these observations it is believed that bio-processes weaken the strength of the in-pipe sediment deposits. A significantly weaker sediment surface layer was observed during deposition under quiescent oxygen-rich conditions. This resulted in a deposit with low shear strength which may be a cause of a first foul flush of suspended sediment when flow rates were increased. Comparison between tests with sewer sediments and the artificial representative surrogates suggested that the deposits of the later did not correctly simulate the depositional development and the resultant erosion patterns observed with the more bio-active sewer sediment.


Subject(s)
Geologic Sediments , Models, Theoretical , Sewage , Particle Size , Rain , Stress, Mechanical , Water Movements
20.
Philos Trans A Math Phys Eng Sci ; 362(1822): 1973-86, 2004 Sep 15.
Article in English | MEDLINE | ID: mdl-15306425

ABSTRACT

A discrete particle model is described which simulates bedload transport over a flat bed of a unimodal mixed-sized distribution of particles. Simple physical rules are applied to large numbers of discrete sediment grains moving within a unidirectional flow. The modelling assumptions and main algorithms of the bedload transport model are presented and discussed. Sediment particles are represented by smooth spheres, which move under the drag forces of a simulated fluid flow. Bedload mass-transport rates calculated by the model exhibit a low sensitivity to chosen model parameters. Comparisons of the calculated mass-transport rates with well-established empirical relationships are good, strongly suggesting that the discrete particle model has captured the essential elements of the system physics. This performance provides strong justification for future interrogation of the model to investigate details of the small-scale constituent processes which have hitherto been outside the reach of previous experimental and modelling investigations.

SELECTION OF CITATIONS
SEARCH DETAIL
...